Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onssneli | Structured version Visualization version GIF version |
Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onssneli | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
2 | on.1 | . . . . 5 ⊢ 𝐴 ∈ On | |
3 | 2 | oneli 6359 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) |
4 | eloni 6261 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
5 | ordirr 6269 | . . . 4 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐵) |
7 | 1, 6 | nsyli 157 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐴)) |
8 | 7 | pm2.01d 189 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ⊆ wss 3883 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: cofcutr 34019 onsucconni 34553 |
Copyright terms: Public domain | W3C validator |