| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onssneli | Structured version Visualization version GIF version | ||
| Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onssneli | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3957 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
| 2 | on.1 | . . . . 5 ⊢ 𝐴 ∈ On | |
| 3 | 2 | oneli 6473 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) |
| 4 | eloni 6367 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 5 | ordirr 6375 | . . . 4 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
| 6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐵) |
| 7 | 1, 6 | nsyli 157 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐴)) |
| 8 | 7 | pm2.01d 190 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3931 Ord word 6356 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 |
| This theorem is referenced by: cofcutr 27889 onsucconni 36460 |
| Copyright terms: Public domain | W3C validator |