MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssneli Structured version   Visualization version   GIF version

Theorem onssneli 6370
Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onssneli (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem onssneli
StepHypRef Expression
1 ssel 3914 . . 3 (𝐴𝐵 → (𝐵𝐴𝐵𝐵))
2 on.1 . . . . 5 𝐴 ∈ On
32oneli 6368 . . . 4 (𝐵𝐴𝐵 ∈ On)
4 eloni 6270 . . . 4 (𝐵 ∈ On → Ord 𝐵)
5 ordirr 6278 . . . 4 (Ord 𝐵 → ¬ 𝐵𝐵)
63, 4, 53syl 18 . . 3 (𝐵𝐴 → ¬ 𝐵𝐵)
71, 6nsyli 157 . 2 (𝐴𝐵 → (𝐵𝐴 → ¬ 𝐵𝐴))
87pm2.01d 189 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  wss 3887  Ord word 6259  Oncon0 6260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-ord 6263  df-on 6264
This theorem is referenced by:  cofcutr  34078  onsucconni  34612
  Copyright terms: Public domain W3C validator