![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onssneli | Structured version Visualization version GIF version |
Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onssneli | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3989 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
2 | on.1 | . . . . 5 ⊢ 𝐴 ∈ On | |
3 | 2 | oneli 6500 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) |
4 | eloni 6396 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
5 | ordirr 6404 | . . . 4 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐵) |
7 | 1, 6 | nsyli 157 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐴)) |
8 | 7 | pm2.01d 190 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ⊆ wss 3963 Ord word 6385 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: cofcutr 27973 onsucconni 36420 |
Copyright terms: Public domain | W3C validator |