Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onssneli | Structured version Visualization version GIF version |
Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onssneli | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
2 | on.1 | . . . . 5 ⊢ 𝐴 ∈ On | |
3 | 2 | oneli 6368 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ On) |
4 | eloni 6270 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
5 | ordirr 6278 | . . . 4 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐵) |
7 | 1, 6 | nsyli 157 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ 𝐴)) |
8 | 7 | pm2.01d 189 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ⊆ wss 3887 Ord word 6259 Oncon0 6260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-ord 6263 df-on 6264 |
This theorem is referenced by: cofcutr 34078 onsucconni 34612 |
Copyright terms: Public domain | W3C validator |