MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval2 Structured version   Visualization version   GIF version

Theorem alephval2 10563
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.)
Assertion
Ref Expression
alephval2 ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ (β„΅β€˜π΄) = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯})
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem alephval2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephordi 10065 . . . . 5 (𝐴 ∈ On β†’ (𝑦 ∈ 𝐴 β†’ (β„΅β€˜π‘¦) β‰Ί (β„΅β€˜π΄)))
21ralrimiv 3137 . . . 4 (𝐴 ∈ On β†’ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί (β„΅β€˜π΄))
3 alephon 10060 . . . 4 (β„΅β€˜π΄) ∈ On
42, 3jctil 519 . . 3 (𝐴 ∈ On β†’ ((β„΅β€˜π΄) ∈ On ∧ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί (β„΅β€˜π΄)))
5 breq2 5142 . . . . 5 (π‘₯ = (β„΅β€˜π΄) β†’ ((β„΅β€˜π‘¦) β‰Ί π‘₯ ↔ (β„΅β€˜π‘¦) β‰Ί (β„΅β€˜π΄)))
65ralbidv 3169 . . . 4 (π‘₯ = (β„΅β€˜π΄) β†’ (βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯ ↔ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί (β„΅β€˜π΄)))
76elrab 3675 . . 3 ((β„΅β€˜π΄) ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯} ↔ ((β„΅β€˜π΄) ∈ On ∧ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί (β„΅β€˜π΄)))
84, 7sylibr 233 . 2 (𝐴 ∈ On β†’ (β„΅β€˜π΄) ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯})
9 cardsdomelir 9964 . . . . 5 (𝑧 ∈ (cardβ€˜(β„΅β€˜π΄)) β†’ 𝑧 β‰Ί (β„΅β€˜π΄))
10 alephcard 10061 . . . . . 6 (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄)
1110eqcomi 2733 . . . . 5 (β„΅β€˜π΄) = (cardβ€˜(β„΅β€˜π΄))
129, 11eleq2s 2843 . . . 4 (𝑧 ∈ (β„΅β€˜π΄) β†’ 𝑧 β‰Ί (β„΅β€˜π΄))
13 omex 9634 . . . . . 6 Ο‰ ∈ V
14 vex 3470 . . . . . 6 𝑧 ∈ V
15 entri3 10550 . . . . . 6 ((Ο‰ ∈ V ∧ 𝑧 ∈ V) β†’ (Ο‰ β‰Ό 𝑧 ∨ 𝑧 β‰Ό Ο‰))
1613, 14, 15mp2an 689 . . . . 5 (Ο‰ β‰Ό 𝑧 ∨ 𝑧 β‰Ό Ο‰)
17 carddom 10545 . . . . . . . . . 10 ((Ο‰ ∈ V ∧ 𝑧 ∈ V) β†’ ((cardβ€˜Ο‰) βŠ† (cardβ€˜π‘§) ↔ Ο‰ β‰Ό 𝑧))
1813, 14, 17mp2an 689 . . . . . . . . 9 ((cardβ€˜Ο‰) βŠ† (cardβ€˜π‘§) ↔ Ο‰ β‰Ό 𝑧)
19 cardom 9977 . . . . . . . . . 10 (cardβ€˜Ο‰) = Ο‰
2019sseq1i 4002 . . . . . . . . 9 ((cardβ€˜Ο‰) βŠ† (cardβ€˜π‘§) ↔ Ο‰ βŠ† (cardβ€˜π‘§))
2118, 20bitr3i 277 . . . . . . . 8 (Ο‰ β‰Ό 𝑧 ↔ Ο‰ βŠ† (cardβ€˜π‘§))
22 cardidm 9950 . . . . . . . . . 10 (cardβ€˜(cardβ€˜π‘§)) = (cardβ€˜π‘§)
23 cardalephex 10081 . . . . . . . . . 10 (Ο‰ βŠ† (cardβ€˜π‘§) β†’ ((cardβ€˜(cardβ€˜π‘§)) = (cardβ€˜π‘§) ↔ βˆƒπ‘₯ ∈ On (cardβ€˜π‘§) = (β„΅β€˜π‘₯)))
2422, 23mpbii 232 . . . . . . . . 9 (Ο‰ βŠ† (cardβ€˜π‘§) β†’ βˆƒπ‘₯ ∈ On (cardβ€˜π‘§) = (β„΅β€˜π‘₯))
25 alephord 10066 . . . . . . . . . . . . 13 ((π‘₯ ∈ On ∧ 𝐴 ∈ On) β†’ (π‘₯ ∈ 𝐴 ↔ (β„΅β€˜π‘₯) β‰Ί (β„΅β€˜π΄)))
2625ancoms 458 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ π‘₯ ∈ On) β†’ (π‘₯ ∈ 𝐴 ↔ (β„΅β€˜π‘₯) β‰Ί (β„΅β€˜π΄)))
27 breq1 5141 . . . . . . . . . . . . 13 ((cardβ€˜π‘§) = (β„΅β€˜π‘₯) β†’ ((cardβ€˜π‘§) β‰Ί (β„΅β€˜π΄) ↔ (β„΅β€˜π‘₯) β‰Ί (β„΅β€˜π΄)))
2814cardid 10538 . . . . . . . . . . . . . 14 (cardβ€˜π‘§) β‰ˆ 𝑧
29 sdomen1 9117 . . . . . . . . . . . . . 14 ((cardβ€˜π‘§) β‰ˆ 𝑧 β†’ ((cardβ€˜π‘§) β‰Ί (β„΅β€˜π΄) ↔ 𝑧 β‰Ί (β„΅β€˜π΄)))
3028, 29ax-mp 5 . . . . . . . . . . . . 13 ((cardβ€˜π‘§) β‰Ί (β„΅β€˜π΄) ↔ 𝑧 β‰Ί (β„΅β€˜π΄))
3127, 30bitr3di 286 . . . . . . . . . . . 12 ((cardβ€˜π‘§) = (β„΅β€˜π‘₯) β†’ ((β„΅β€˜π‘₯) β‰Ί (β„΅β€˜π΄) ↔ 𝑧 β‰Ί (β„΅β€˜π΄)))
3226, 31sylan9bb 509 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ π‘₯ ∈ On) ∧ (cardβ€˜π‘§) = (β„΅β€˜π‘₯)) β†’ (π‘₯ ∈ 𝐴 ↔ 𝑧 β‰Ί (β„΅β€˜π΄)))
33 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑦 = π‘₯ β†’ (β„΅β€˜π‘¦) = (β„΅β€˜π‘₯))
3433breq1d 5148 . . . . . . . . . . . . . . 15 (𝑦 = π‘₯ β†’ ((β„΅β€˜π‘¦) β‰Ί 𝑧 ↔ (β„΅β€˜π‘₯) β‰Ί 𝑧))
3534rspcv 3600 . . . . . . . . . . . . . 14 (π‘₯ ∈ 𝐴 β†’ (βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧 β†’ (β„΅β€˜π‘₯) β‰Ί 𝑧))
36 sdomirr 9110 . . . . . . . . . . . . . . 15 Β¬ (β„΅β€˜π‘₯) β‰Ί (β„΅β€˜π‘₯)
37 sdomen2 9118 . . . . . . . . . . . . . . . . 17 ((cardβ€˜π‘§) β‰ˆ 𝑧 β†’ ((β„΅β€˜π‘₯) β‰Ί (cardβ€˜π‘§) ↔ (β„΅β€˜π‘₯) β‰Ί 𝑧))
3828, 37ax-mp 5 . . . . . . . . . . . . . . . 16 ((β„΅β€˜π‘₯) β‰Ί (cardβ€˜π‘§) ↔ (β„΅β€˜π‘₯) β‰Ί 𝑧)
39 breq2 5142 . . . . . . . . . . . . . . . 16 ((cardβ€˜π‘§) = (β„΅β€˜π‘₯) β†’ ((β„΅β€˜π‘₯) β‰Ί (cardβ€˜π‘§) ↔ (β„΅β€˜π‘₯) β‰Ί (β„΅β€˜π‘₯)))
4038, 39bitr3id 285 . . . . . . . . . . . . . . 15 ((cardβ€˜π‘§) = (β„΅β€˜π‘₯) β†’ ((β„΅β€˜π‘₯) β‰Ί 𝑧 ↔ (β„΅β€˜π‘₯) β‰Ί (β„΅β€˜π‘₯)))
4136, 40mtbiri 327 . . . . . . . . . . . . . 14 ((cardβ€˜π‘§) = (β„΅β€˜π‘₯) β†’ Β¬ (β„΅β€˜π‘₯) β‰Ί 𝑧)
4235, 41nsyli 157 . . . . . . . . . . . . 13 (π‘₯ ∈ 𝐴 β†’ ((cardβ€˜π‘§) = (β„΅β€˜π‘₯) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
4342com12 32 . . . . . . . . . . . 12 ((cardβ€˜π‘§) = (β„΅β€˜π‘₯) β†’ (π‘₯ ∈ 𝐴 β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
4443adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ π‘₯ ∈ On) ∧ (cardβ€˜π‘§) = (β„΅β€˜π‘₯)) β†’ (π‘₯ ∈ 𝐴 β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
4532, 44sylbird 260 . . . . . . . . . 10 (((𝐴 ∈ On ∧ π‘₯ ∈ On) ∧ (cardβ€˜π‘§) = (β„΅β€˜π‘₯)) β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
4645rexlimdva2 3149 . . . . . . . . 9 (𝐴 ∈ On β†’ (βˆƒπ‘₯ ∈ On (cardβ€˜π‘§) = (β„΅β€˜π‘₯) β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)))
4724, 46syl5 34 . . . . . . . 8 (𝐴 ∈ On β†’ (Ο‰ βŠ† (cardβ€˜π‘§) β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)))
4821, 47biimtrid 241 . . . . . . 7 (𝐴 ∈ On β†’ (Ο‰ β‰Ό 𝑧 β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)))
4948adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ (Ο‰ β‰Ό 𝑧 β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)))
50 ne0i 4326 . . . . . . . . . . . 12 (βˆ… ∈ 𝐴 β†’ 𝐴 β‰  βˆ…)
51 onelon 6379 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) β†’ 𝑦 ∈ On)
52 alephgeom 10073 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On ↔ Ο‰ βŠ† (β„΅β€˜π‘¦))
53 alephon 10060 . . . . . . . . . . . . . . . . . . 19 (β„΅β€˜π‘¦) ∈ On
54 ssdomg 8992 . . . . . . . . . . . . . . . . . . 19 ((β„΅β€˜π‘¦) ∈ On β†’ (Ο‰ βŠ† (β„΅β€˜π‘¦) β†’ Ο‰ β‰Ό (β„΅β€˜π‘¦)))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . 18 (Ο‰ βŠ† (β„΅β€˜π‘¦) β†’ Ο‰ β‰Ό (β„΅β€˜π‘¦))
5652, 55sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ On β†’ Ο‰ β‰Ό (β„΅β€˜π‘¦))
57 domtr 8999 . . . . . . . . . . . . . . . . 17 ((𝑧 β‰Ό Ο‰ ∧ Ο‰ β‰Ό (β„΅β€˜π‘¦)) β†’ 𝑧 β‰Ό (β„΅β€˜π‘¦))
5856, 57sylan2 592 . . . . . . . . . . . . . . . 16 ((𝑧 β‰Ό Ο‰ ∧ 𝑦 ∈ On) β†’ 𝑧 β‰Ό (β„΅β€˜π‘¦))
59 domnsym 9095 . . . . . . . . . . . . . . . 16 (𝑧 β‰Ό (β„΅β€˜π‘¦) β†’ Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧)
6058, 59syl 17 . . . . . . . . . . . . . . 15 ((𝑧 β‰Ό Ο‰ ∧ 𝑦 ∈ On) β†’ Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧)
6151, 60sylan2 592 . . . . . . . . . . . . . 14 ((𝑧 β‰Ό Ο‰ ∧ (𝐴 ∈ On ∧ 𝑦 ∈ 𝐴)) β†’ Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧)
6261expr 456 . . . . . . . . . . . . 13 ((𝑧 β‰Ό Ο‰ ∧ 𝐴 ∈ On) β†’ (𝑦 ∈ 𝐴 β†’ Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧))
6362ralrimiv 3137 . . . . . . . . . . . 12 ((𝑧 β‰Ό Ο‰ ∧ 𝐴 ∈ On) β†’ βˆ€π‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧)
64 r19.2z 4486 . . . . . . . . . . . . 13 ((𝐴 β‰  βˆ… ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧) β†’ βˆƒπ‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧)
6564ex 412 . . . . . . . . . . . 12 (𝐴 β‰  βˆ… β†’ (βˆ€π‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧 β†’ βˆƒπ‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧))
6650, 63, 65syl2im 40 . . . . . . . . . . 11 (βˆ… ∈ 𝐴 β†’ ((𝑧 β‰Ό Ο‰ ∧ 𝐴 ∈ On) β†’ βˆƒπ‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧))
67 rexnal 3092 . . . . . . . . . . 11 (βˆƒπ‘¦ ∈ 𝐴 Β¬ (β„΅β€˜π‘¦) β‰Ί 𝑧 ↔ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)
6866, 67imbitrdi 250 . . . . . . . . . 10 (βˆ… ∈ 𝐴 β†’ ((𝑧 β‰Ό Ο‰ ∧ 𝐴 ∈ On) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
6968com12 32 . . . . . . . . 9 ((𝑧 β‰Ό Ο‰ ∧ 𝐴 ∈ On) β†’ (βˆ… ∈ 𝐴 β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
7069expimpd 453 . . . . . . . 8 (𝑧 β‰Ό Ο‰ β†’ ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
7170a1d 25 . . . . . . 7 (𝑧 β‰Ό Ο‰ β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)))
7271com3r 87 . . . . . 6 ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ (𝑧 β‰Ό Ο‰ β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)))
7349, 72jaod 856 . . . . 5 ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ ((Ο‰ β‰Ό 𝑧 ∨ 𝑧 β‰Ό Ο‰) β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)))
7416, 73mpi 20 . . . 4 ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ (𝑧 β‰Ί (β„΅β€˜π΄) β†’ Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
75 breq2 5142 . . . . . . . 8 (π‘₯ = 𝑧 β†’ ((β„΅β€˜π‘¦) β‰Ί π‘₯ ↔ (β„΅β€˜π‘¦) β‰Ί 𝑧))
7675ralbidv 3169 . . . . . . 7 (π‘₯ = 𝑧 β†’ (βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯ ↔ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
7776elrab 3675 . . . . . 6 (𝑧 ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯} ↔ (𝑧 ∈ On ∧ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧))
7877simprbi 496 . . . . 5 (𝑧 ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯} β†’ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧)
7978con3i 154 . . . 4 (Β¬ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί 𝑧 β†’ Β¬ 𝑧 ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯})
8012, 74, 79syl56 36 . . 3 ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ (𝑧 ∈ (β„΅β€˜π΄) β†’ Β¬ 𝑧 ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯}))
8180ralrimiv 3137 . 2 ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ βˆ€π‘§ ∈ (β„΅β€˜π΄) Β¬ 𝑧 ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯})
82 ssrab2 4069 . . 3 {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯} βŠ† On
83 oneqmini 6406 . . 3 ({π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯} βŠ† On β†’ (((β„΅β€˜π΄) ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯} ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄) Β¬ 𝑧 ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯}) β†’ (β„΅β€˜π΄) = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯}))
8482, 83ax-mp 5 . 2 (((β„΅β€˜π΄) ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯} ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄) Β¬ 𝑧 ∈ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯}) β†’ (β„΅β€˜π΄) = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯})
858, 81, 84syl2an2r 682 1 ((𝐴 ∈ On ∧ βˆ… ∈ 𝐴) β†’ (β„΅β€˜π΄) = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 (β„΅β€˜π‘¦) β‰Ί π‘₯})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062  {crab 3424  Vcvv 3466   βŠ† wss 3940  βˆ…c0 4314  βˆ© cint 4940   class class class wbr 5138  Oncon0 6354  β€˜cfv 6533  Ο‰com 7848   β‰ˆ cen 8932   β‰Ό cdom 8933   β‰Ί csdm 8934  cardccrd 9926  β„΅cale 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-ac2 10454
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-har 9548  df-card 9930  df-aleph 9931  df-ac 10107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator