MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval2 Structured version   Visualization version   GIF version

Theorem alephval2 10421
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.)
Assertion
Ref Expression
alephval2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem alephval2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephordi 9923 . . . . 5 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
21ralrimiv 3138 . . . 4 (𝐴 ∈ On → ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴))
3 alephon 9918 . . . 4 (ℵ‘𝐴) ∈ On
42, 3jctil 520 . . 3 (𝐴 ∈ On → ((ℵ‘𝐴) ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
5 breq2 5093 . . . . 5 (𝑥 = (ℵ‘𝐴) → ((ℵ‘𝑦) ≺ 𝑥 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
65ralbidv 3170 . . . 4 (𝑥 = (ℵ‘𝐴) → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥 ↔ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
76elrab 3634 . . 3 ((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ↔ ((ℵ‘𝐴) ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
84, 7sylibr 233 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
9 cardsdomelir 9822 . . . . 5 (𝑧 ∈ (card‘(ℵ‘𝐴)) → 𝑧 ≺ (ℵ‘𝐴))
10 alephcard 9919 . . . . . 6 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
1110eqcomi 2745 . . . . 5 (ℵ‘𝐴) = (card‘(ℵ‘𝐴))
129, 11eleq2s 2855 . . . 4 (𝑧 ∈ (ℵ‘𝐴) → 𝑧 ≺ (ℵ‘𝐴))
13 omex 9492 . . . . . 6 ω ∈ V
14 vex 3445 . . . . . 6 𝑧 ∈ V
15 entri3 10408 . . . . . 6 ((ω ∈ V ∧ 𝑧 ∈ V) → (ω ≼ 𝑧𝑧 ≼ ω))
1613, 14, 15mp2an 689 . . . . 5 (ω ≼ 𝑧𝑧 ≼ ω)
17 carddom 10403 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑧 ∈ V) → ((card‘ω) ⊆ (card‘𝑧) ↔ ω ≼ 𝑧))
1813, 14, 17mp2an 689 . . . . . . . . 9 ((card‘ω) ⊆ (card‘𝑧) ↔ ω ≼ 𝑧)
19 cardom 9835 . . . . . . . . . 10 (card‘ω) = ω
2019sseq1i 3959 . . . . . . . . 9 ((card‘ω) ⊆ (card‘𝑧) ↔ ω ⊆ (card‘𝑧))
2118, 20bitr3i 276 . . . . . . . 8 (ω ≼ 𝑧 ↔ ω ⊆ (card‘𝑧))
22 cardidm 9808 . . . . . . . . . 10 (card‘(card‘𝑧)) = (card‘𝑧)
23 cardalephex 9939 . . . . . . . . . 10 (ω ⊆ (card‘𝑧) → ((card‘(card‘𝑧)) = (card‘𝑧) ↔ ∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥)))
2422, 23mpbii 232 . . . . . . . . 9 (ω ⊆ (card‘𝑧) → ∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥))
25 alephord 9924 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝑥𝐴 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
2625ancoms 459 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑥𝐴 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
27 breq1 5092 . . . . . . . . . . . . 13 ((card‘𝑧) = (ℵ‘𝑥) → ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
2814cardid 10396 . . . . . . . . . . . . . 14 (card‘𝑧) ≈ 𝑧
29 sdomen1 8978 . . . . . . . . . . . . . 14 ((card‘𝑧) ≈ 𝑧 → ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴)))
3028, 29ax-mp 5 . . . . . . . . . . . . 13 ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴))
3127, 30bitr3di 285 . . . . . . . . . . . 12 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴)))
3226, 31sylan9bb 510 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑥𝐴𝑧 ≺ (ℵ‘𝐴)))
33 fveq2 6819 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℵ‘𝑦) = (ℵ‘𝑥))
3433breq1d 5099 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((ℵ‘𝑦) ≺ 𝑧 ↔ (ℵ‘𝑥) ≺ 𝑧))
3534rspcv 3566 . . . . . . . . . . . . . 14 (𝑥𝐴 → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧 → (ℵ‘𝑥) ≺ 𝑧))
36 sdomirr 8971 . . . . . . . . . . . . . . 15 ¬ (ℵ‘𝑥) ≺ (ℵ‘𝑥)
37 sdomen2 8979 . . . . . . . . . . . . . . . . 17 ((card‘𝑧) ≈ 𝑧 → ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ 𝑧))
3828, 37ax-mp 5 . . . . . . . . . . . . . . . 16 ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ 𝑧)
39 breq2 5093 . . . . . . . . . . . . . . . 16 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ (ℵ‘𝑥)))
4038, 39bitr3id 284 . . . . . . . . . . . . . . 15 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ 𝑧 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝑥)))
4136, 40mtbiri 326 . . . . . . . . . . . . . 14 ((card‘𝑧) = (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ 𝑧)
4235, 41nsyli 157 . . . . . . . . . . . . 13 (𝑥𝐴 → ((card‘𝑧) = (ℵ‘𝑥) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4342com12 32 . . . . . . . . . . . 12 ((card‘𝑧) = (ℵ‘𝑥) → (𝑥𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4443adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑥𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4532, 44sylbird 259 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4645rexlimdva2 3150 . . . . . . . . 9 (𝐴 ∈ On → (∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4724, 46syl5 34 . . . . . . . 8 (𝐴 ∈ On → (ω ⊆ (card‘𝑧) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4821, 47biimtrid 241 . . . . . . 7 (𝐴 ∈ On → (ω ≼ 𝑧 → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4948adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ω ≼ 𝑧 → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
50 ne0i 4280 . . . . . . . . . . . 12 (∅ ∈ 𝐴𝐴 ≠ ∅)
51 onelon 6321 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
52 alephgeom 9931 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On ↔ ω ⊆ (ℵ‘𝑦))
53 alephon 9918 . . . . . . . . . . . . . . . . . . 19 (ℵ‘𝑦) ∈ On
54 ssdomg 8853 . . . . . . . . . . . . . . . . . . 19 ((ℵ‘𝑦) ∈ On → (ω ⊆ (ℵ‘𝑦) → ω ≼ (ℵ‘𝑦)))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . 18 (ω ⊆ (ℵ‘𝑦) → ω ≼ (ℵ‘𝑦))
5652, 55sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ On → ω ≼ (ℵ‘𝑦))
57 domtr 8860 . . . . . . . . . . . . . . . . 17 ((𝑧 ≼ ω ∧ ω ≼ (ℵ‘𝑦)) → 𝑧 ≼ (ℵ‘𝑦))
5856, 57sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑧 ≼ ω ∧ 𝑦 ∈ On) → 𝑧 ≼ (ℵ‘𝑦))
59 domnsym 8956 . . . . . . . . . . . . . . . 16 (𝑧 ≼ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6058, 59syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ≼ ω ∧ 𝑦 ∈ On) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6151, 60sylan2 593 . . . . . . . . . . . . . 14 ((𝑧 ≼ ω ∧ (𝐴 ∈ On ∧ 𝑦𝐴)) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6261expr 457 . . . . . . . . . . . . 13 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → (𝑦𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑧))
6362ralrimiv 3138 . . . . . . . . . . . 12 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧)
64 r19.2z 4438 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧) → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧)
6564ex 413 . . . . . . . . . . . 12 (𝐴 ≠ ∅ → (∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧 → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧))
6650, 63, 65syl2im 40 . . . . . . . . . . 11 (∅ ∈ 𝐴 → ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧))
67 rexnal 3099 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧 ↔ ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)
6866, 67syl6ib 250 . . . . . . . . . 10 (∅ ∈ 𝐴 → ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
6968com12 32 . . . . . . . . 9 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7069expimpd 454 . . . . . . . 8 (𝑧 ≼ ω → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7170a1d 25 . . . . . . 7 (𝑧 ≼ ω → (𝑧 ≺ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7271com3r 87 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ≼ ω → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7349, 72jaod 856 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((ω ≼ 𝑧𝑧 ≼ ω) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7416, 73mpi 20 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
75 breq2 5093 . . . . . . . 8 (𝑥 = 𝑧 → ((ℵ‘𝑦) ≺ 𝑥 ↔ (ℵ‘𝑦) ≺ 𝑧))
7675ralbidv 3170 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥 ↔ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7776elrab 3634 . . . . . 6 (𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ↔ (𝑧 ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7877simprbi 497 . . . . 5 (𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} → ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)
7978con3i 154 . . . 4 (¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧 → ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
8012, 74, 79syl56 36 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ℵ‘𝐴) → ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}))
8180ralrimiv 3138 . 2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
82 ssrab2 4024 . . 3 {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ⊆ On
83 oneqmini 6347 . . 3 ({𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ⊆ On → (((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}))
8482, 83ax-mp 5 . 2 (((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
858, 81, 84syl2an2r 682 1 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  {crab 3403  Vcvv 3441  wss 3897  c0 4268   cint 4893   class class class wbr 5089  Oncon0 6296  cfv 6473  ωcom 7772  cen 8793  cdom 8794  csdm 8795  cardccrd 9784  cale 9785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-ac2 10312
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-oi 9359  df-har 9406  df-card 9788  df-aleph 9789  df-ac 9965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator