MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval2 Structured version   Visualization version   GIF version

Theorem alephval2 9729
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.)
Assertion
Ref Expression
alephval2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem alephval2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephordi 9230 . . . . 5 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
21ralrimiv 3147 . . . 4 (𝐴 ∈ On → ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴))
3 alephon 9225 . . . 4 (ℵ‘𝐴) ∈ On
42, 3jctil 515 . . 3 (𝐴 ∈ On → ((ℵ‘𝐴) ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
5 breq2 4890 . . . . 5 (𝑥 = (ℵ‘𝐴) → ((ℵ‘𝑦) ≺ 𝑥 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
65ralbidv 3168 . . . 4 (𝑥 = (ℵ‘𝐴) → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥 ↔ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
76elrab 3572 . . 3 ((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ↔ ((ℵ‘𝐴) ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
84, 7sylibr 226 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
9 cardsdomelir 9132 . . . . 5 (𝑧 ∈ (card‘(ℵ‘𝐴)) → 𝑧 ≺ (ℵ‘𝐴))
10 alephcard 9226 . . . . . 6 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
1110eqcomi 2787 . . . . 5 (ℵ‘𝐴) = (card‘(ℵ‘𝐴))
129, 11eleq2s 2877 . . . 4 (𝑧 ∈ (ℵ‘𝐴) → 𝑧 ≺ (ℵ‘𝐴))
13 omex 8837 . . . . . 6 ω ∈ V
14 vex 3401 . . . . . 6 𝑧 ∈ V
15 entri3 9716 . . . . . 6 ((ω ∈ V ∧ 𝑧 ∈ V) → (ω ≼ 𝑧𝑧 ≼ ω))
1613, 14, 15mp2an 682 . . . . 5 (ω ≼ 𝑧𝑧 ≼ ω)
17 carddom 9711 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑧 ∈ V) → ((card‘ω) ⊆ (card‘𝑧) ↔ ω ≼ 𝑧))
1813, 14, 17mp2an 682 . . . . . . . . 9 ((card‘ω) ⊆ (card‘𝑧) ↔ ω ≼ 𝑧)
19 cardom 9145 . . . . . . . . . 10 (card‘ω) = ω
2019sseq1i 3848 . . . . . . . . 9 ((card‘ω) ⊆ (card‘𝑧) ↔ ω ⊆ (card‘𝑧))
2118, 20bitr3i 269 . . . . . . . 8 (ω ≼ 𝑧 ↔ ω ⊆ (card‘𝑧))
22 cardidm 9118 . . . . . . . . . 10 (card‘(card‘𝑧)) = (card‘𝑧)
23 cardalephex 9246 . . . . . . . . . 10 (ω ⊆ (card‘𝑧) → ((card‘(card‘𝑧)) = (card‘𝑧) ↔ ∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥)))
2422, 23mpbii 225 . . . . . . . . 9 (ω ⊆ (card‘𝑧) → ∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥))
25 alephord 9231 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝑥𝐴 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
2625ancoms 452 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑥𝐴 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
2714cardid 9704 . . . . . . . . . . . . . 14 (card‘𝑧) ≈ 𝑧
28 sdomen1 8392 . . . . . . . . . . . . . 14 ((card‘𝑧) ≈ 𝑧 → ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴)))
2927, 28ax-mp 5 . . . . . . . . . . . . 13 ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴))
30 breq1 4889 . . . . . . . . . . . . 13 ((card‘𝑧) = (ℵ‘𝑥) → ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
3129, 30syl5rbbr 278 . . . . . . . . . . . 12 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴)))
3226, 31sylan9bb 505 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑥𝐴𝑧 ≺ (ℵ‘𝐴)))
33 fveq2 6446 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℵ‘𝑦) = (ℵ‘𝑥))
3433breq1d 4896 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((ℵ‘𝑦) ≺ 𝑧 ↔ (ℵ‘𝑥) ≺ 𝑧))
3534rspcv 3507 . . . . . . . . . . . . . 14 (𝑥𝐴 → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧 → (ℵ‘𝑥) ≺ 𝑧))
36 sdomirr 8385 . . . . . . . . . . . . . . 15 ¬ (ℵ‘𝑥) ≺ (ℵ‘𝑥)
37 sdomen2 8393 . . . . . . . . . . . . . . . . 17 ((card‘𝑧) ≈ 𝑧 → ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ 𝑧))
3827, 37ax-mp 5 . . . . . . . . . . . . . . . 16 ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ 𝑧)
39 breq2 4890 . . . . . . . . . . . . . . . 16 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ (ℵ‘𝑥)))
4038, 39syl5bbr 277 . . . . . . . . . . . . . . 15 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ 𝑧 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝑥)))
4136, 40mtbiri 319 . . . . . . . . . . . . . 14 ((card‘𝑧) = (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ 𝑧)
4235, 41nsyli 157 . . . . . . . . . . . . 13 (𝑥𝐴 → ((card‘𝑧) = (ℵ‘𝑥) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4342com12 32 . . . . . . . . . . . 12 ((card‘𝑧) = (ℵ‘𝑥) → (𝑥𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4443adantl 475 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑥𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4532, 44sylbird 252 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4645rexlimdva2 3216 . . . . . . . . 9 (𝐴 ∈ On → (∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4724, 46syl5 34 . . . . . . . 8 (𝐴 ∈ On → (ω ⊆ (card‘𝑧) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4821, 47syl5bi 234 . . . . . . 7 (𝐴 ∈ On → (ω ≼ 𝑧 → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4948adantr 474 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ω ≼ 𝑧 → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
50 ne0i 4149 . . . . . . . . . . . 12 (∅ ∈ 𝐴𝐴 ≠ ∅)
51 onelon 6001 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
52 alephgeom 9238 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On ↔ ω ⊆ (ℵ‘𝑦))
53 alephon 9225 . . . . . . . . . . . . . . . . . . 19 (ℵ‘𝑦) ∈ On
54 ssdomg 8287 . . . . . . . . . . . . . . . . . . 19 ((ℵ‘𝑦) ∈ On → (ω ⊆ (ℵ‘𝑦) → ω ≼ (ℵ‘𝑦)))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . 18 (ω ⊆ (ℵ‘𝑦) → ω ≼ (ℵ‘𝑦))
5652, 55sylbi 209 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ On → ω ≼ (ℵ‘𝑦))
57 domtr 8294 . . . . . . . . . . . . . . . . 17 ((𝑧 ≼ ω ∧ ω ≼ (ℵ‘𝑦)) → 𝑧 ≼ (ℵ‘𝑦))
5856, 57sylan2 586 . . . . . . . . . . . . . . . 16 ((𝑧 ≼ ω ∧ 𝑦 ∈ On) → 𝑧 ≼ (ℵ‘𝑦))
59 domnsym 8374 . . . . . . . . . . . . . . . 16 (𝑧 ≼ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6058, 59syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ≼ ω ∧ 𝑦 ∈ On) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6151, 60sylan2 586 . . . . . . . . . . . . . 14 ((𝑧 ≼ ω ∧ (𝐴 ∈ On ∧ 𝑦𝐴)) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6261expr 450 . . . . . . . . . . . . 13 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → (𝑦𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑧))
6362ralrimiv 3147 . . . . . . . . . . . 12 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧)
64 r19.2z 4283 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧) → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧)
6564ex 403 . . . . . . . . . . . 12 (𝐴 ≠ ∅ → (∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧 → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧))
6650, 63, 65syl2im 40 . . . . . . . . . . 11 (∅ ∈ 𝐴 → ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧))
67 rexnal 3176 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧 ↔ ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)
6866, 67syl6ib 243 . . . . . . . . . 10 (∅ ∈ 𝐴 → ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
6968com12 32 . . . . . . . . 9 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7069expimpd 447 . . . . . . . 8 (𝑧 ≼ ω → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7170a1d 25 . . . . . . 7 (𝑧 ≼ ω → (𝑧 ≺ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7271com3r 87 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ≼ ω → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7349, 72jaod 848 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((ω ≼ 𝑧𝑧 ≼ ω) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7416, 73mpi 20 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
75 breq2 4890 . . . . . . . 8 (𝑥 = 𝑧 → ((ℵ‘𝑦) ≺ 𝑥 ↔ (ℵ‘𝑦) ≺ 𝑧))
7675ralbidv 3168 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥 ↔ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7776elrab 3572 . . . . . 6 (𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ↔ (𝑧 ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7877simprbi 492 . . . . 5 (𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} → ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)
7978con3i 152 . . . 4 (¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧 → ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
8012, 74, 79syl56 36 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ℵ‘𝐴) → ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}))
8180ralrimiv 3147 . 2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
82 ssrab2 3908 . . 3 {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ⊆ On
83 oneqmini 6027 . . 3 ({𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ⊆ On → (((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}))
8482, 83ax-mp 5 . 2 (((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
858, 81, 84syl2an2r 675 1 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  {crab 3094  Vcvv 3398  wss 3792  c0 4141   cint 4710   class class class wbr 4886  Oncon0 5976  cfv 6135  ωcom 7343  cen 8238  cdom 8239  csdm 8240  cardccrd 9094  cale 9095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-ac2 9620
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-oi 8704  df-har 8752  df-card 9098  df-aleph 9099  df-ac 9272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator