MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval2 Structured version   Visualization version   GIF version

Theorem alephval2 10532
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.)
Assertion
Ref Expression
alephval2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem alephval2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephordi 10034 . . . . 5 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
21ralrimiv 3125 . . . 4 (𝐴 ∈ On → ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴))
3 alephon 10029 . . . 4 (ℵ‘𝐴) ∈ On
42, 3jctil 519 . . 3 (𝐴 ∈ On → ((ℵ‘𝐴) ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
5 breq2 5114 . . . . 5 (𝑥 = (ℵ‘𝐴) → ((ℵ‘𝑦) ≺ 𝑥 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
65ralbidv 3157 . . . 4 (𝑥 = (ℵ‘𝐴) → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥 ↔ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
76elrab 3662 . . 3 ((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ↔ ((ℵ‘𝐴) ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
84, 7sylibr 234 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
9 cardsdomelir 9933 . . . . 5 (𝑧 ∈ (card‘(ℵ‘𝐴)) → 𝑧 ≺ (ℵ‘𝐴))
10 alephcard 10030 . . . . . 6 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
1110eqcomi 2739 . . . . 5 (ℵ‘𝐴) = (card‘(ℵ‘𝐴))
129, 11eleq2s 2847 . . . 4 (𝑧 ∈ (ℵ‘𝐴) → 𝑧 ≺ (ℵ‘𝐴))
13 omex 9603 . . . . . 6 ω ∈ V
14 vex 3454 . . . . . 6 𝑧 ∈ V
15 entri3 10519 . . . . . 6 ((ω ∈ V ∧ 𝑧 ∈ V) → (ω ≼ 𝑧𝑧 ≼ ω))
1613, 14, 15mp2an 692 . . . . 5 (ω ≼ 𝑧𝑧 ≼ ω)
17 carddom 10514 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑧 ∈ V) → ((card‘ω) ⊆ (card‘𝑧) ↔ ω ≼ 𝑧))
1813, 14, 17mp2an 692 . . . . . . . . 9 ((card‘ω) ⊆ (card‘𝑧) ↔ ω ≼ 𝑧)
19 cardom 9946 . . . . . . . . . 10 (card‘ω) = ω
2019sseq1i 3978 . . . . . . . . 9 ((card‘ω) ⊆ (card‘𝑧) ↔ ω ⊆ (card‘𝑧))
2118, 20bitr3i 277 . . . . . . . 8 (ω ≼ 𝑧 ↔ ω ⊆ (card‘𝑧))
22 cardidm 9919 . . . . . . . . . 10 (card‘(card‘𝑧)) = (card‘𝑧)
23 cardalephex 10050 . . . . . . . . . 10 (ω ⊆ (card‘𝑧) → ((card‘(card‘𝑧)) = (card‘𝑧) ↔ ∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥)))
2422, 23mpbii 233 . . . . . . . . 9 (ω ⊆ (card‘𝑧) → ∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥))
25 alephord 10035 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝑥𝐴 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
2625ancoms 458 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑥𝐴 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
27 breq1 5113 . . . . . . . . . . . . 13 ((card‘𝑧) = (ℵ‘𝑥) → ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
2814cardid 10507 . . . . . . . . . . . . . 14 (card‘𝑧) ≈ 𝑧
29 sdomen1 9091 . . . . . . . . . . . . . 14 ((card‘𝑧) ≈ 𝑧 → ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴)))
3028, 29ax-mp 5 . . . . . . . . . . . . 13 ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴))
3127, 30bitr3di 286 . . . . . . . . . . . 12 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴)))
3226, 31sylan9bb 509 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑥𝐴𝑧 ≺ (ℵ‘𝐴)))
33 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℵ‘𝑦) = (ℵ‘𝑥))
3433breq1d 5120 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((ℵ‘𝑦) ≺ 𝑧 ↔ (ℵ‘𝑥) ≺ 𝑧))
3534rspcv 3587 . . . . . . . . . . . . . 14 (𝑥𝐴 → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧 → (ℵ‘𝑥) ≺ 𝑧))
36 sdomirr 9084 . . . . . . . . . . . . . . 15 ¬ (ℵ‘𝑥) ≺ (ℵ‘𝑥)
37 sdomen2 9092 . . . . . . . . . . . . . . . . 17 ((card‘𝑧) ≈ 𝑧 → ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ 𝑧))
3828, 37ax-mp 5 . . . . . . . . . . . . . . . 16 ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ 𝑧)
39 breq2 5114 . . . . . . . . . . . . . . . 16 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ (ℵ‘𝑥)))
4038, 39bitr3id 285 . . . . . . . . . . . . . . 15 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ 𝑧 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝑥)))
4136, 40mtbiri 327 . . . . . . . . . . . . . 14 ((card‘𝑧) = (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ 𝑧)
4235, 41nsyli 157 . . . . . . . . . . . . 13 (𝑥𝐴 → ((card‘𝑧) = (ℵ‘𝑥) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4342com12 32 . . . . . . . . . . . 12 ((card‘𝑧) = (ℵ‘𝑥) → (𝑥𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4443adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑥𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4532, 44sylbird 260 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4645rexlimdva2 3137 . . . . . . . . 9 (𝐴 ∈ On → (∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4724, 46syl5 34 . . . . . . . 8 (𝐴 ∈ On → (ω ⊆ (card‘𝑧) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4821, 47biimtrid 242 . . . . . . 7 (𝐴 ∈ On → (ω ≼ 𝑧 → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4948adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ω ≼ 𝑧 → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
50 ne0i 4307 . . . . . . . . . . . 12 (∅ ∈ 𝐴𝐴 ≠ ∅)
51 onelon 6360 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
52 alephgeom 10042 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On ↔ ω ⊆ (ℵ‘𝑦))
53 alephon 10029 . . . . . . . . . . . . . . . . . . 19 (ℵ‘𝑦) ∈ On
54 ssdomg 8974 . . . . . . . . . . . . . . . . . . 19 ((ℵ‘𝑦) ∈ On → (ω ⊆ (ℵ‘𝑦) → ω ≼ (ℵ‘𝑦)))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . 18 (ω ⊆ (ℵ‘𝑦) → ω ≼ (ℵ‘𝑦))
5652, 55sylbi 217 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ On → ω ≼ (ℵ‘𝑦))
57 domtr 8981 . . . . . . . . . . . . . . . . 17 ((𝑧 ≼ ω ∧ ω ≼ (ℵ‘𝑦)) → 𝑧 ≼ (ℵ‘𝑦))
5856, 57sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑧 ≼ ω ∧ 𝑦 ∈ On) → 𝑧 ≼ (ℵ‘𝑦))
59 domnsym 9073 . . . . . . . . . . . . . . . 16 (𝑧 ≼ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6058, 59syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ≼ ω ∧ 𝑦 ∈ On) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6151, 60sylan2 593 . . . . . . . . . . . . . 14 ((𝑧 ≼ ω ∧ (𝐴 ∈ On ∧ 𝑦𝐴)) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6261expr 456 . . . . . . . . . . . . 13 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → (𝑦𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑧))
6362ralrimiv 3125 . . . . . . . . . . . 12 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧)
64 r19.2z 4461 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧) → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧)
6564ex 412 . . . . . . . . . . . 12 (𝐴 ≠ ∅ → (∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧 → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧))
6650, 63, 65syl2im 40 . . . . . . . . . . 11 (∅ ∈ 𝐴 → ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧))
67 rexnal 3083 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧 ↔ ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)
6866, 67imbitrdi 251 . . . . . . . . . 10 (∅ ∈ 𝐴 → ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
6968com12 32 . . . . . . . . 9 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7069expimpd 453 . . . . . . . 8 (𝑧 ≼ ω → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7170a1d 25 . . . . . . 7 (𝑧 ≼ ω → (𝑧 ≺ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7271com3r 87 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ≼ ω → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7349, 72jaod 859 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((ω ≼ 𝑧𝑧 ≼ ω) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7416, 73mpi 20 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
75 breq2 5114 . . . . . . . 8 (𝑥 = 𝑧 → ((ℵ‘𝑦) ≺ 𝑥 ↔ (ℵ‘𝑦) ≺ 𝑧))
7675ralbidv 3157 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥 ↔ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7776elrab 3662 . . . . . 6 (𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ↔ (𝑧 ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7877simprbi 496 . . . . 5 (𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} → ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)
7978con3i 154 . . . 4 (¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧 → ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
8012, 74, 79syl56 36 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ℵ‘𝐴) → ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}))
8180ralrimiv 3125 . 2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
82 ssrab2 4046 . . 3 {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ⊆ On
83 oneqmini 6388 . . 3 ({𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ⊆ On → (((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}))
8482, 83ax-mp 5 . 2 (((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
858, 81, 84syl2an2r 685 1 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299   cint 4913   class class class wbr 5110  Oncon0 6335  cfv 6514  ωcom 7845  cen 8918  cdom 8919  csdm 8920  cardccrd 9895  cale 9896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-har 9517  df-card 9899  df-aleph 9900  df-ac 10076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator