Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephval2 Structured version   Visualization version   GIF version

Theorem alephval2 9987
 Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of [Suppes] p. 229. (Contributed by NM, 15-Nov-2003.)
Assertion
Ref Expression
alephval2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem alephval2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alephordi 9489 . . . . 5 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
21ralrimiv 3151 . . . 4 (𝐴 ∈ On → ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴))
3 alephon 9484 . . . 4 (ℵ‘𝐴) ∈ On
42, 3jctil 523 . . 3 (𝐴 ∈ On → ((ℵ‘𝐴) ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
5 breq2 5037 . . . . 5 (𝑥 = (ℵ‘𝐴) → ((ℵ‘𝑦) ≺ 𝑥 ↔ (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
65ralbidv 3165 . . . 4 (𝑥 = (ℵ‘𝐴) → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥 ↔ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
76elrab 3631 . . 3 ((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ↔ ((ℵ‘𝐴) ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ (ℵ‘𝐴)))
84, 7sylibr 237 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
9 cardsdomelir 9390 . . . . 5 (𝑧 ∈ (card‘(ℵ‘𝐴)) → 𝑧 ≺ (ℵ‘𝐴))
10 alephcard 9485 . . . . . 6 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
1110eqcomi 2810 . . . . 5 (ℵ‘𝐴) = (card‘(ℵ‘𝐴))
129, 11eleq2s 2911 . . . 4 (𝑧 ∈ (ℵ‘𝐴) → 𝑧 ≺ (ℵ‘𝐴))
13 omex 9094 . . . . . 6 ω ∈ V
14 vex 3447 . . . . . 6 𝑧 ∈ V
15 entri3 9974 . . . . . 6 ((ω ∈ V ∧ 𝑧 ∈ V) → (ω ≼ 𝑧𝑧 ≼ ω))
1613, 14, 15mp2an 691 . . . . 5 (ω ≼ 𝑧𝑧 ≼ ω)
17 carddom 9969 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑧 ∈ V) → ((card‘ω) ⊆ (card‘𝑧) ↔ ω ≼ 𝑧))
1813, 14, 17mp2an 691 . . . . . . . . 9 ((card‘ω) ⊆ (card‘𝑧) ↔ ω ≼ 𝑧)
19 cardom 9403 . . . . . . . . . 10 (card‘ω) = ω
2019sseq1i 3946 . . . . . . . . 9 ((card‘ω) ⊆ (card‘𝑧) ↔ ω ⊆ (card‘𝑧))
2118, 20bitr3i 280 . . . . . . . 8 (ω ≼ 𝑧 ↔ ω ⊆ (card‘𝑧))
22 cardidm 9376 . . . . . . . . . 10 (card‘(card‘𝑧)) = (card‘𝑧)
23 cardalephex 9505 . . . . . . . . . 10 (ω ⊆ (card‘𝑧) → ((card‘(card‘𝑧)) = (card‘𝑧) ↔ ∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥)))
2422, 23mpbii 236 . . . . . . . . 9 (ω ⊆ (card‘𝑧) → ∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥))
25 alephord 9490 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝑥𝐴 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
2625ancoms 462 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝑥𝐴 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
27 breq1 5036 . . . . . . . . . . . . 13 ((card‘𝑧) = (ℵ‘𝑥) → ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ (ℵ‘𝑥) ≺ (ℵ‘𝐴)))
2814cardid 9962 . . . . . . . . . . . . . 14 (card‘𝑧) ≈ 𝑧
29 sdomen1 8649 . . . . . . . . . . . . . 14 ((card‘𝑧) ≈ 𝑧 → ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴)))
3028, 29ax-mp 5 . . . . . . . . . . . . 13 ((card‘𝑧) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴))
3127, 30bitr3di 289 . . . . . . . . . . . 12 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ (ℵ‘𝐴) ↔ 𝑧 ≺ (ℵ‘𝐴)))
3226, 31sylan9bb 513 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑥𝐴𝑧 ≺ (ℵ‘𝐴)))
33 fveq2 6649 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (ℵ‘𝑦) = (ℵ‘𝑥))
3433breq1d 5043 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((ℵ‘𝑦) ≺ 𝑧 ↔ (ℵ‘𝑥) ≺ 𝑧))
3534rspcv 3569 . . . . . . . . . . . . . 14 (𝑥𝐴 → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧 → (ℵ‘𝑥) ≺ 𝑧))
36 sdomirr 8642 . . . . . . . . . . . . . . 15 ¬ (ℵ‘𝑥) ≺ (ℵ‘𝑥)
37 sdomen2 8650 . . . . . . . . . . . . . . . . 17 ((card‘𝑧) ≈ 𝑧 → ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ 𝑧))
3828, 37ax-mp 5 . . . . . . . . . . . . . . . 16 ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ 𝑧)
39 breq2 5037 . . . . . . . . . . . . . . . 16 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ (card‘𝑧) ↔ (ℵ‘𝑥) ≺ (ℵ‘𝑥)))
4038, 39bitr3id 288 . . . . . . . . . . . . . . 15 ((card‘𝑧) = (ℵ‘𝑥) → ((ℵ‘𝑥) ≺ 𝑧 ↔ (ℵ‘𝑥) ≺ (ℵ‘𝑥)))
4136, 40mtbiri 330 . . . . . . . . . . . . . 14 ((card‘𝑧) = (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ≺ 𝑧)
4235, 41nsyli 160 . . . . . . . . . . . . 13 (𝑥𝐴 → ((card‘𝑧) = (ℵ‘𝑥) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4342com12 32 . . . . . . . . . . . 12 ((card‘𝑧) = (ℵ‘𝑥) → (𝑥𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4443adantl 485 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑥𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4532, 44sylbird 263 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑥 ∈ On) ∧ (card‘𝑧) = (ℵ‘𝑥)) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
4645rexlimdva2 3249 . . . . . . . . 9 (𝐴 ∈ On → (∃𝑥 ∈ On (card‘𝑧) = (ℵ‘𝑥) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4724, 46syl5 34 . . . . . . . 8 (𝐴 ∈ On → (ω ⊆ (card‘𝑧) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4821, 47syl5bi 245 . . . . . . 7 (𝐴 ∈ On → (ω ≼ 𝑧 → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
4948adantr 484 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ω ≼ 𝑧 → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
50 ne0i 4253 . . . . . . . . . . . 12 (∅ ∈ 𝐴𝐴 ≠ ∅)
51 onelon 6188 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ∈ On)
52 alephgeom 9497 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On ↔ ω ⊆ (ℵ‘𝑦))
53 alephon 9484 . . . . . . . . . . . . . . . . . . 19 (ℵ‘𝑦) ∈ On
54 ssdomg 8542 . . . . . . . . . . . . . . . . . . 19 ((ℵ‘𝑦) ∈ On → (ω ⊆ (ℵ‘𝑦) → ω ≼ (ℵ‘𝑦)))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . 18 (ω ⊆ (ℵ‘𝑦) → ω ≼ (ℵ‘𝑦))
5652, 55sylbi 220 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ On → ω ≼ (ℵ‘𝑦))
57 domtr 8549 . . . . . . . . . . . . . . . . 17 ((𝑧 ≼ ω ∧ ω ≼ (ℵ‘𝑦)) → 𝑧 ≼ (ℵ‘𝑦))
5856, 57sylan2 595 . . . . . . . . . . . . . . . 16 ((𝑧 ≼ ω ∧ 𝑦 ∈ On) → 𝑧 ≼ (ℵ‘𝑦))
59 domnsym 8631 . . . . . . . . . . . . . . . 16 (𝑧 ≼ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6058, 59syl 17 . . . . . . . . . . . . . . 15 ((𝑧 ≼ ω ∧ 𝑦 ∈ On) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6151, 60sylan2 595 . . . . . . . . . . . . . 14 ((𝑧 ≼ ω ∧ (𝐴 ∈ On ∧ 𝑦𝐴)) → ¬ (ℵ‘𝑦) ≺ 𝑧)
6261expr 460 . . . . . . . . . . . . 13 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → (𝑦𝐴 → ¬ (ℵ‘𝑦) ≺ 𝑧))
6362ralrimiv 3151 . . . . . . . . . . . 12 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧)
64 r19.2z 4401 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧) → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧)
6564ex 416 . . . . . . . . . . . 12 (𝐴 ≠ ∅ → (∀𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧 → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧))
6650, 63, 65syl2im 40 . . . . . . . . . . 11 (∅ ∈ 𝐴 → ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧))
67 rexnal 3204 . . . . . . . . . . 11 (∃𝑦𝐴 ¬ (ℵ‘𝑦) ≺ 𝑧 ↔ ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)
6866, 67syl6ib 254 . . . . . . . . . 10 (∅ ∈ 𝐴 → ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
6968com12 32 . . . . . . . . 9 ((𝑧 ≼ ω ∧ 𝐴 ∈ On) → (∅ ∈ 𝐴 → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7069expimpd 457 . . . . . . . 8 (𝑧 ≼ ω → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7170a1d 25 . . . . . . 7 (𝑧 ≼ ω → (𝑧 ≺ (ℵ‘𝐴) → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7271com3r 87 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ≼ ω → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7349, 72jaod 856 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((ω ≼ 𝑧𝑧 ≼ ω) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)))
7416, 73mpi 20 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ≺ (ℵ‘𝐴) → ¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
75 breq2 5037 . . . . . . . 8 (𝑥 = 𝑧 → ((ℵ‘𝑦) ≺ 𝑥 ↔ (ℵ‘𝑦) ≺ 𝑧))
7675ralbidv 3165 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥 ↔ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7776elrab 3631 . . . . . 6 (𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ↔ (𝑧 ∈ On ∧ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧))
7877simprbi 500 . . . . 5 (𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} → ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧)
7978con3i 157 . . . 4 (¬ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑧 → ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
8012, 74, 79syl56 36 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑧 ∈ (ℵ‘𝐴) → ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}))
8180ralrimiv 3151 . 2 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
82 ssrab2 4010 . . 3 {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ⊆ On
83 oneqmini 6214 . . 3 ({𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ⊆ On → (((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}))
8482, 83ax-mp 5 . 2 (((ℵ‘𝐴) ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥} ∧ ∀𝑧 ∈ (ℵ‘𝐴) ¬ 𝑧 ∈ {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥}) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
858, 81, 84syl2an2r 684 1 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (ℵ‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (ℵ‘𝑦) ≺ 𝑥})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110  {crab 3113  Vcvv 3444   ⊆ wss 3884  ∅c0 4246  ∩ cint 4841   class class class wbr 5033  Oncon0 6163  ‘cfv 6328  ωcom 7564   ≈ cen 8493   ≼ cdom 8494   ≺ csdm 8495  cardccrd 9352  ℵcale 9353 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-ac2 9878 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-oi 8962  df-har 9009  df-card 9356  df-aleph 9357  df-ac 9531 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator