| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddp1div2z | Structured version Visualization version GIF version | ||
| Description: The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| Ref | Expression |
|---|---|
| oddp1div2z | ⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isodd 47621 | . 2 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 (class class class)co 7432 1c1 11157 + caddc 11159 / cdiv 11921 2c2 12322 ℤcz 12615 Odd codd 47617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-odd 47619 |
| This theorem is referenced by: oddm1div2z 47626 oddp1eveni 47633 |
| Copyright terms: Public domain | W3C validator |