Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddp1div2z Structured version   Visualization version   GIF version

Theorem oddp1div2z 47743
Description: The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.)
Assertion
Ref Expression
oddp1div2z (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ)

Proof of Theorem oddp1div2z
StepHypRef Expression
1 isodd 47739 . 2 (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))
21simprbi 496 1 (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  (class class class)co 7346  1c1 11007   + caddc 11009   / cdiv 11774  2c2 12180  cz 12468   Odd codd 47735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-ov 7349  df-odd 47737
This theorem is referenced by:  oddm1div2z  47744  oddp1eveni  47751
  Copyright terms: Public domain W3C validator