Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddp1div2z Structured version   Visualization version   GIF version

Theorem oddp1div2z 46301
Description: The result of dividing an odd number increased by 1 and then divided by 2 is an integer. (Contributed by AV, 15-Jun-2020.)
Assertion
Ref Expression
oddp1div2z (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ)

Proof of Theorem oddp1div2z
StepHypRef Expression
1 isodd 46297 . 2 (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))
21simprbi 498 1 (𝑍 ∈ Odd → ((𝑍 + 1) / 2) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  (class class class)co 7409  1c1 11111   + caddc 11113   / cdiv 11871  2c2 12267  cz 12558   Odd codd 46293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-odd 46295
This theorem is referenced by:  oddm1div2z  46302  oddp1eveni  46309
  Copyright terms: Public domain W3C validator