Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evendiv2z Structured version   Visualization version   GIF version

Theorem evendiv2z 47557
Description: The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.)
Assertion
Ref Expression
evendiv2z (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ)

Proof of Theorem evendiv2z
StepHypRef Expression
1 iseven 47553 . 2 (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))
21simprbi 496 1 (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  (class class class)co 7431   / cdiv 11918  2c2 12319  cz 12611   Even ceven 47549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-even 47551
This theorem is referenced by:  zefldiv2ALTV  47586  nn0e  47622  nneven  47623
  Copyright terms: Public domain W3C validator