Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evendiv2z Structured version   Visualization version   GIF version

Theorem evendiv2z 45084
Description: The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.)
Assertion
Ref Expression
evendiv2z (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ)

Proof of Theorem evendiv2z
StepHypRef Expression
1 iseven 45080 . 2 (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))
21simprbi 497 1 (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  (class class class)co 7275   / cdiv 11632  2c2 12028  cz 12319   Even ceven 45076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-even 45078
This theorem is referenced by:  zefldiv2ALTV  45113  nn0e  45149  nneven  45150
  Copyright terms: Public domain W3C validator