| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evendiv2z | Structured version Visualization version GIF version | ||
| Description: The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| Ref | Expression |
|---|---|
| evendiv2z | ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven 47622 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7410 / cdiv 11899 2c2 12300 ℤcz 12593 Even ceven 47618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-even 47620 |
| This theorem is referenced by: zefldiv2ALTV 47655 nn0e 47691 nneven 47692 |
| Copyright terms: Public domain | W3C validator |