| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evendiv2z | Structured version Visualization version GIF version | ||
| Description: The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
| Ref | Expression |
|---|---|
| evendiv2z | ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseven 47790 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 (class class class)co 7355 / cdiv 11785 2c2 12191 ℤcz 12479 Even ceven 47786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-even 47788 |
| This theorem is referenced by: zefldiv2ALTV 47823 nn0e 47859 nneven 47860 |
| Copyright terms: Public domain | W3C validator |