![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evendiv2z | Structured version Visualization version GIF version |
Description: The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.) |
Ref | Expression |
---|---|
evendiv2z | ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseven 43191 | . 2 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) | |
2 | 1 | simprbi 489 | 1 ⊢ (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 (class class class)co 6975 / cdiv 11097 2c2 11494 ℤcz 11792 Even ceven 43187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-rex 3089 df-rab 3092 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-iota 6150 df-fv 6194 df-ov 6978 df-even 43189 |
This theorem is referenced by: zefldiv2ALTV 43224 nn0e 43260 nneven 43261 |
Copyright terms: Public domain | W3C validator |