![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onelini | Structured version Visualization version GIF version |
Description: An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onelini | ⊢ (𝐵 ∈ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onelssi 6479 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
3 | dfss 3966 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐵 ∩ 𝐴)) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 ⊆ wss 3948 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-v 3475 df-in 3955 df-ss 3965 df-uni 4909 df-tr 5266 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |