MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelini Structured version   Visualization version   GIF version

Theorem onelini 6430
Description: An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onelini (𝐵𝐴𝐵 = (𝐵𝐴))

Proof of Theorem onelini
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onelssi 6427 . 2 (𝐵𝐴𝐵𝐴)
3 dfss 3917 . 2 (𝐵𝐴𝐵 = (𝐵𝐴))
42, 3sylib 218 1 (𝐵𝐴𝐵 = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cin 3897  wss 3898  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-in 3905  df-ss 3915  df-uni 4859  df-tr 5201  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator