![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oneluni | Structured version Visualization version GIF version |
Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
oneluni | ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onelssi 6480 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
3 | ssequn2 4184 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
4 | 2, 3 | sylib 217 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 ⊆ wss 3949 Oncon0 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-uni 4910 df-tr 5267 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 |
This theorem is referenced by: omabs2 42082 |
Copyright terms: Public domain | W3C validator |