MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneluni Structured version   Visualization version   GIF version

Theorem oneluni 6495
Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
oneluni (𝐵𝐴 → (𝐴𝐵) = 𝐴)

Proof of Theorem oneluni
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onelssi 6491 . 2 (𝐵𝐴𝐵𝐴)
3 ssequn2 4184 . 2 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
42, 3sylib 217 1 (𝐵𝐴 → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cun 3945  wss 3947  Oncon0 6376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-v 3464  df-un 3952  df-ss 3964  df-uni 4914  df-tr 5271  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6379  df-on 6380
This theorem is referenced by:  omabs2  42998
  Copyright terms: Public domain W3C validator