| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oneluni | Structured version Visualization version GIF version | ||
| Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| oneluni | ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
| 2 | 1 | onelssi 6452 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
| 3 | ssequn2 4155 | . 2 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
| 4 | 2, 3 | sylib 218 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ∪ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-un 3922 df-ss 3934 df-uni 4875 df-tr 5218 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: omabs2 43328 |
| Copyright terms: Public domain | W3C validator |