MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneluni Structured version   Visualization version   GIF version

Theorem oneluni 6432
Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
oneluni (𝐵𝐴 → (𝐴𝐵) = 𝐴)

Proof of Theorem oneluni
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onelssi 6428 . 2 (𝐵𝐴𝐵𝐴)
3 ssequn2 4138 . 2 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
42, 3sylib 218 1 (𝐵𝐴 → (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cun 3895  wss 3897  Oncon0 6312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-un 3902  df-ss 3914  df-uni 4859  df-tr 5201  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6315  df-on 6316
This theorem is referenced by:  omabs2  43430
  Copyright terms: Public domain W3C validator