| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onelssi | Structured version Visualization version GIF version | ||
| Description: A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onelssi | ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onelss 6399 | . 2 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3931 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-ss 3948 df-uni 4889 df-tr 5235 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 |
| This theorem is referenced by: onelini 6477 oneluni 6478 oawordeulem 8571 cardsdomelir 9992 carddom2 9996 cardaleph 10108 alephsing 10295 domtriomlem 10461 axdc3lem 10469 inar1 10794 nodense 27661 |
| Copyright terms: Public domain | W3C validator |