MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelssi Structured version   Visualization version   GIF version

Theorem onelssi 6422
Description: A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onelssi (𝐵𝐴𝐵𝐴)

Proof of Theorem onelssi
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 onelss 6348 . 2 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
31, 2ax-mp 5 1 (𝐵𝐴𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3897  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3914  df-uni 4857  df-tr 5197  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310
This theorem is referenced by:  onelini  6425  oneluni  6426  oawordeulem  8469  cardsdomelir  9866  carddom2  9870  cardaleph  9980  alephsing  10167  domtriomlem  10333  axdc3lem  10341  inar1  10666  nodense  27631
  Copyright terms: Public domain W3C validator