MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onelssi Structured version   Visualization version   GIF version

Theorem onelssi 6479
Description: A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onelssi (𝐵𝐴𝐵𝐴)

Proof of Theorem onelssi
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 onelss 6406 . 2 (𝐴 ∈ On → (𝐵𝐴𝐵𝐴))
31, 2ax-mp 5 1 (𝐵𝐴𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wss 3948  Oncon0 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-v 3475  df-in 3955  df-ss 3965  df-uni 4909  df-tr 5266  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368
This theorem is referenced by:  onelini  6482  oneluni  6483  oawordeulem  8560  cardsdomelir  9974  carddom2  9978  cardaleph  10090  alephsing  10277  domtriomlem  10443  axdc3lem  10451  inar1  10776  nodense  27539
  Copyright terms: Public domain W3C validator