Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onelssi | Structured version Visualization version GIF version |
Description: A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onelssi | ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onelss 6215 | . 2 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3860 Oncon0 6173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-11 2158 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-in 3867 df-ss 3877 df-uni 4802 df-tr 5142 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-ord 6176 df-on 6177 |
This theorem is referenced by: onelini 6285 oneluni 6286 oawordeulem 8195 cardsdomelir 9440 carddom2 9444 cardaleph 9554 alephsing 9741 domtriomlem 9907 axdc3lem 9915 inar1 10240 nodense 33484 |
Copyright terms: Public domain | W3C validator |