Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onssnel2i | Structured version Visualization version GIF version |
Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onssnel2i | ⊢ (𝐵 ⊆ 𝐴 → ¬ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onirri 6413 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 |
3 | ssel 3925 | . 2 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐴)) | |
4 | 2, 3 | mtoi 198 | 1 ⊢ (𝐵 ⊆ 𝐴 → ¬ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ⊆ wss 3898 Oncon0 6302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-tr 5210 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-ord 6305 df-on 6306 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |