MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onssnel2i Structured version   Visualization version   GIF version

Theorem onssnel2i 6377
Description: An ordering law for ordinal numbers. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onssnel2i (𝐵𝐴 → ¬ 𝐴𝐵)

Proof of Theorem onssnel2i
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onirri 6373 . 2 ¬ 𝐴𝐴
3 ssel 3914 . 2 (𝐵𝐴 → (𝐴𝐵𝐴𝐴))
42, 3mtoi 198 1 (𝐵𝐴 → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106  wss 3887  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator