MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull Structured version   Visualization version   GIF version

Theorem isfull 17288
Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b 𝐵 = (Base‘𝐶)
isfull.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
isfull (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐽,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem isfull
Dummy variables 𝑐 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullfunc 17284 . . 3 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
21ssbri 5076 . 2 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 5032 . . . . . . 7 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
4 funcrcl 17241 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4sylbi 220 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
6 oveq12 7182 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
76breqd 5042 . . . . . . . . 9 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓(𝑐 Func 𝑑)𝑔𝑓(𝐶 Func 𝐷)𝑔))
8 simpl 486 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
98fveq2d 6681 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
10 isfull.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
119, 10eqtr4di 2792 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = 𝐵)
12 simpr 488 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
1312fveq2d 6681 . . . . . . . . . . . . . 14 ((𝑐 = 𝐶𝑑 = 𝐷) → (Hom ‘𝑑) = (Hom ‘𝐷))
14 isfull.j . . . . . . . . . . . . . 14 𝐽 = (Hom ‘𝐷)
1513, 14eqtr4di 2792 . . . . . . . . . . . . 13 ((𝑐 = 𝐶𝑑 = 𝐷) → (Hom ‘𝑑) = 𝐽)
1615oveqd 7190 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)))
1716eqeq2d 2750 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑑 = 𝐷) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
1811, 17raleqbidv 3305 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ∀𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
1911, 18raleqbidv 3305 . . . . . . . . 9 ((𝑐 = 𝐶𝑑 = 𝐷) → (∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
207, 19anbi12d 634 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦))) ↔ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))))
2120opabbidv 5097 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
22 df-full 17282 . . . . . . 7 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
23 ovex 7206 . . . . . . . 8 (𝐶 Func 𝐷) ∈ V
24 simpl 486 . . . . . . . . . 10 ((𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))) → 𝑓(𝐶 Func 𝐷)𝑔)
2524ssopab2i 5406 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝐶 Func 𝐷)𝑔}
26 opabss 5095 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝐶 Func 𝐷)𝑔} ⊆ (𝐶 Func 𝐷)
2725, 26sstri 3887 . . . . . . . 8 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ⊆ (𝐶 Func 𝐷)
2823, 27ssexi 5191 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ∈ V
2921, 22, 28ovmpoa 7323 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
305, 29syl 17 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 Full 𝐷) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
3130breqd 5042 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺))
32 relfunc 17240 . . . . . 6 Rel (𝐶 Func 𝐷)
3332brrelex12i 5579 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
34 breq12 5036 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(𝐶 Func 𝐷)𝑔𝐹(𝐶 Func 𝐷)𝐺))
35 simpr 488 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
3635oveqd 7190 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
3736rneqd 5782 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ran (𝑥𝑔𝑦) = ran (𝑥𝐺𝑦))
38 simpl 486 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
3938fveq1d 6679 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑥) = (𝐹𝑥))
4038fveq1d 6679 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑦) = (𝐹𝑦))
4139, 40oveq12d 7191 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
4237, 41eqeq12d 2755 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
43422ralbidv 3112 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
4434, 43anbi12d 634 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
45 eqid 2739 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}
4644, 45brabga 5390 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
4733, 46syl 17 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
4831, 47bitrd 282 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
4948bianabs 545 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
502, 49biadanii 822 1 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  Vcvv 3399  cop 4523   class class class wbr 5031  {copab 5093  ran crn 5527  cfv 6340  (class class class)co 7173  Basecbs 16589  Hom chom 16682  Catccat 17041   Func cfunc 17232   Full cful 17280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-1st 7717  df-2nd 7718  df-func 17236  df-full 17282
This theorem is referenced by:  isfull2  17289  fullpropd  17298  fulloppc  17300  fullres2c  17317
  Copyright terms: Public domain W3C validator