MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull Structured version   Visualization version   GIF version

Theorem isfull 16774
Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b 𝐵 = (Base‘𝐶)
isfull.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
isfull (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐽,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem isfull
Dummy variables 𝑐 𝑑 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullfunc 16770 . . 3 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
21ssbri 4889 . 2 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 4845 . . . . . . 7 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
4 funcrcl 16727 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
53, 4sylbi 208 . . . . . 6 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
6 oveq12 6883 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐 Func 𝑑) = (𝐶 Func 𝐷))
76breqd 4855 . . . . . . . . 9 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓(𝑐 Func 𝑑)𝑔𝑓(𝐶 Func 𝐷)𝑔))
8 simpl 470 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
98fveq2d 6412 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
10 isfull.b . . . . . . . . . . 11 𝐵 = (Base‘𝐶)
119, 10syl6eqr 2858 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = 𝐵)
12 simpr 473 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
1312fveq2d 6412 . . . . . . . . . . . . . 14 ((𝑐 = 𝐶𝑑 = 𝐷) → (Hom ‘𝑑) = (Hom ‘𝐷))
14 isfull.j . . . . . . . . . . . . . 14 𝐽 = (Hom ‘𝐷)
1513, 14syl6eqr 2858 . . . . . . . . . . . . 13 ((𝑐 = 𝐶𝑑 = 𝐷) → (Hom ‘𝑑) = 𝐽)
1615oveqd 6891 . . . . . . . . . . . 12 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)))
1716eqeq2d 2816 . . . . . . . . . . 11 ((𝑐 = 𝐶𝑑 = 𝐷) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
1811, 17raleqbidv 3341 . . . . . . . . . 10 ((𝑐 = 𝐶𝑑 = 𝐷) → (∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ∀𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
1911, 18raleqbidv 3341 . . . . . . . . 9 ((𝑐 = 𝐶𝑑 = 𝐷) → (∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))))
207, 19anbi12d 618 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦))) ↔ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))))
2120opabbidv 4910 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
22 df-full 16768 . . . . . . 7 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
23 ovex 6906 . . . . . . . 8 (𝐶 Func 𝐷) ∈ V
24 simpl 470 . . . . . . . . . 10 ((𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))) → 𝑓(𝐶 Func 𝐷)𝑔)
2524ssopab2i 5198 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝐶 Func 𝐷)𝑔}
26 opabss 4908 . . . . . . . . 9 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝐶 Func 𝐷)𝑔} ⊆ (𝐶 Func 𝐷)
2725, 26sstri 3807 . . . . . . . 8 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ⊆ (𝐶 Func 𝐷)
2823, 27ssexi 4998 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} ∈ V
2921, 22, 28ovmpt2a 7021 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Full 𝐷) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
305, 29syl 17 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐶 Full 𝐷) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))})
3130breqd 4855 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺))
32 relfunc 16726 . . . . . 6 Rel (𝐶 Func 𝐷)
33 brrelex12 5355 . . . . . 6 ((Rel (𝐶 Func 𝐷) ∧ 𝐹(𝐶 Func 𝐷)𝐺) → (𝐹 ∈ V ∧ 𝐺 ∈ V))
3432, 33mpan 673 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹 ∈ V ∧ 𝐺 ∈ V))
35 breq12 4849 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(𝐶 Func 𝐷)𝑔𝐹(𝐶 Func 𝐷)𝐺))
36 simpr 473 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
3736oveqd 6891 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
3837rneqd 5554 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ran (𝑥𝑔𝑦) = ran (𝑥𝐺𝑦))
39 simpl 470 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
4039fveq1d 6410 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑥) = (𝐹𝑥))
4139fveq1d 6410 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑦) = (𝐹𝑦))
4240, 41oveq12d 6892 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
4338, 42eqeq12d 2821 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
44432ralbidv 3177 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
4535, 44anbi12d 618 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
46 eqid 2806 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))} = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}
4745, 46brabga 5184 . . . . 5 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
4834, 47syl 17 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹{⟨𝑓, 𝑔⟩ ∣ (𝑓(𝐶 Func 𝐷)𝑔 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝑔𝑦) = ((𝑓𝑥)𝐽(𝑓𝑦)))}𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
4931, 48bitrd 270 . . 3 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦)))))
5049bianabs 533 . 2 (𝐹(𝐶 Func 𝐷)𝐺 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
512, 50biadan2 844 1 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1637  wcel 2156  wral 3096  Vcvv 3391  cop 4376   class class class wbr 4844  {copab 4906  ran crn 5312  Rel wrel 5316  cfv 6101  (class class class)co 6874  Basecbs 16068  Hom chom 16164  Catccat 16529   Func cfunc 16718   Full cful 16766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6064  df-fun 6103  df-fv 6109  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-1st 7398  df-2nd 7399  df-func 16722  df-full 16768
This theorem is referenced by:  isfull2  16775  fullpropd  16784  fulloppc  16786  fullres2c  16803
  Copyright terms: Public domain W3C validator