Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . . . 6
⊢ 𝑦 ∈ V |
2 | 1 | rnex 7759 |
. . . . 5
⊢ ran 𝑦 ∈ V |
3 | 2 | pwex 5303 |
. . . 4
⊢ 𝒫
ran 𝑦 ∈
V |
4 | | raleq 3342 |
. . . . 5
⊢ (𝑥 = 𝒫 ran 𝑦 → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
5 | 4 | exbidv 1924 |
. . . 4
⊢ (𝑥 = 𝒫 ran 𝑦 → (∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
6 | 3, 5 | spcv 3544 |
. . 3
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
7 | | aceq3lem.1 |
. . . . . . 7
⊢ 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) |
8 | | df-mpt 5158 |
. . . . . . 7
⊢ (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) = {〈𝑤, ℎ〉 ∣ (𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))} |
9 | 7, 8 | eqtri 2766 |
. . . . . 6
⊢ 𝐹 = {〈𝑤, ℎ〉 ∣ (𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))} |
10 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
11 | 10 | eldm 5809 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ dom 𝑦 ↔ ∃𝑢 𝑤𝑦𝑢) |
12 | | abn0 4314 |
. . . . . . . . . . . . . 14
⊢ ({𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅ ↔ ∃𝑢 𝑤𝑦𝑢) |
13 | 11, 12 | bitr4i 277 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ dom 𝑦 ↔ {𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅) |
14 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑢 ∈ V |
15 | 10, 14 | brelrn 5851 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤𝑦𝑢 → 𝑢 ∈ ran 𝑦) |
16 | 15 | abssi 4003 |
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∣ 𝑤𝑦𝑢} ⊆ ran 𝑦 |
17 | 2, 16 | elpwi2 5270 |
. . . . . . . . . . . . . 14
⊢ {𝑢 ∣ 𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦 |
18 | | neeq1 3006 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → (𝑧 ≠ ∅ ↔ {𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅)) |
19 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → (𝑓‘𝑧) = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) |
20 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → 𝑧 = {𝑢 ∣ 𝑤𝑦𝑢}) |
21 | 19, 20 | eleq12d 2833 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢})) |
22 | 18, 21 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ({𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢}))) |
23 | 22 | rspcv 3557 |
. . . . . . . . . . . . . 14
⊢ ({𝑢 ∣ 𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦 → (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ({𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢}))) |
24 | 17, 23 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ({𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢})) |
25 | 13, 24 | syl5bi 241 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑤 ∈ dom 𝑦 → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢})) |
26 | 25 | imp 407 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢}) |
27 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ V |
28 | | breq2 5078 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) → (𝑤𝑦𝑧 ↔ 𝑤𝑦(𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))) |
29 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → (𝑤𝑦𝑢 ↔ 𝑤𝑦𝑧)) |
30 | 29 | cbvabv 2811 |
. . . . . . . . . . . 12
⊢ {𝑢 ∣ 𝑤𝑦𝑢} = {𝑧 ∣ 𝑤𝑦𝑧} |
31 | 27, 28, 30 | elab2 3613 |
. . . . . . . . . . 11
⊢ ((𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢} ↔ 𝑤𝑦(𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) |
32 | 26, 31 | sylib 217 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → 𝑤𝑦(𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) |
33 | | breq2 5078 |
. . . . . . . . . 10
⊢ (ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) → (𝑤𝑦ℎ ↔ 𝑤𝑦(𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))) |
34 | 32, 33 | syl5ibrcom 246 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → (ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) → 𝑤𝑦ℎ)) |
35 | 34 | expimpd 454 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) → 𝑤𝑦ℎ)) |
36 | 35 | ssopab2dv 5464 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → {〈𝑤, ℎ〉 ∣ (𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))} ⊆ {〈𝑤, ℎ〉 ∣ 𝑤𝑦ℎ}) |
37 | | opabss 5138 |
. . . . . . 7
⊢
{〈𝑤, ℎ〉 ∣ 𝑤𝑦ℎ} ⊆ 𝑦 |
38 | 36, 37 | sstrdi 3933 |
. . . . . 6
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → {〈𝑤, ℎ〉 ∣ (𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))} ⊆ 𝑦) |
39 | 9, 38 | eqsstrid 3969 |
. . . . 5
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝐹 ⊆ 𝑦) |
40 | 27, 7 | fnmpti 6576 |
. . . . 5
⊢ 𝐹 Fn dom 𝑦 |
41 | 1 | ssex 5245 |
. . . . . . 7
⊢ (𝐹 ⊆ 𝑦 → 𝐹 ∈ V) |
42 | 41 | adantr 481 |
. . . . . 6
⊢ ((𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦) → 𝐹 ∈ V) |
43 | | sseq1 3946 |
. . . . . . . 8
⊢ (𝑔 = 𝐹 → (𝑔 ⊆ 𝑦 ↔ 𝐹 ⊆ 𝑦)) |
44 | | fneq1 6524 |
. . . . . . . 8
⊢ (𝑔 = 𝐹 → (𝑔 Fn dom 𝑦 ↔ 𝐹 Fn dom 𝑦)) |
45 | 43, 44 | anbi12d 631 |
. . . . . . 7
⊢ (𝑔 = 𝐹 → ((𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦) ↔ (𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦))) |
46 | 45 | spcegv 3536 |
. . . . . 6
⊢ (𝐹 ∈ V → ((𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦))) |
47 | 42, 46 | mpcom 38 |
. . . . 5
⊢ ((𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦)) |
48 | 39, 40, 47 | sylancl 586 |
. . . 4
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦)) |
49 | 48 | exlimiv 1933 |
. . 3
⊢
(∃𝑓∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦)) |
50 | 6, 49 | syl 17 |
. 2
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦)) |
51 | | sseq1 3946 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 ⊆ 𝑦 ↔ 𝑓 ⊆ 𝑦)) |
52 | | fneq1 6524 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 Fn dom 𝑦 ↔ 𝑓 Fn dom 𝑦)) |
53 | 51, 52 | anbi12d 631 |
. . 3
⊢ (𝑔 = 𝑓 → ((𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦) ↔ (𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦))) |
54 | 53 | cbvexvw 2040 |
. 2
⊢
(∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦) ↔ ∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) |
55 | 50, 54 | sylib 217 |
1
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) |