MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq3lem Structured version   Visualization version   GIF version

Theorem aceq3lem 9534
Description: Lemma for dfac3 9535. (Contributed by NM, 2-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
aceq3lem.1 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢}))
Assertion
Ref Expression
aceq3lem (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑢,𝑓
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓)

Proof of Theorem aceq3lem
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3495 . . . . . 6 𝑦 ∈ V
21rnex 7606 . . . . 5 ran 𝑦 ∈ V
32pwex 5272 . . . 4 𝒫 ran 𝑦 ∈ V
4 raleq 3403 . . . . 5 (𝑥 = 𝒫 ran 𝑦 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
54exbidv 1913 . . . 4 (𝑥 = 𝒫 ran 𝑦 → (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
63, 5spcv 3603 . . 3 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
7 aceq3lem.1 . . . . . . 7 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢}))
8 df-mpt 5138 . . . . . . 7 (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢})) = {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))}
97, 8eqtri 2841 . . . . . 6 𝐹 = {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))}
10 vex 3495 . . . . . . . . . . . . . . 15 𝑤 ∈ V
1110eldm 5762 . . . . . . . . . . . . . 14 (𝑤 ∈ dom 𝑦 ↔ ∃𝑢 𝑤𝑦𝑢)
12 abn0 4333 . . . . . . . . . . . . . 14 ({𝑢𝑤𝑦𝑢} ≠ ∅ ↔ ∃𝑢 𝑤𝑦𝑢)
1311, 12bitr4i 279 . . . . . . . . . . . . 13 (𝑤 ∈ dom 𝑦 ↔ {𝑢𝑤𝑦𝑢} ≠ ∅)
14 vex 3495 . . . . . . . . . . . . . . . . 17 𝑢 ∈ V
1510, 14brelrn 5805 . . . . . . . . . . . . . . . 16 (𝑤𝑦𝑢𝑢 ∈ ran 𝑦)
1615abssi 4043 . . . . . . . . . . . . . . 15 {𝑢𝑤𝑦𝑢} ⊆ ran 𝑦
172, 16elpwi2 5240 . . . . . . . . . . . . . 14 {𝑢𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦
18 neeq1 3075 . . . . . . . . . . . . . . . 16 (𝑧 = {𝑢𝑤𝑦𝑢} → (𝑧 ≠ ∅ ↔ {𝑢𝑤𝑦𝑢} ≠ ∅))
19 fveq2 6663 . . . . . . . . . . . . . . . . 17 (𝑧 = {𝑢𝑤𝑦𝑢} → (𝑓𝑧) = (𝑓‘{𝑢𝑤𝑦𝑢}))
20 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = {𝑢𝑤𝑦𝑢} → 𝑧 = {𝑢𝑤𝑦𝑢})
2119, 20eleq12d 2904 . . . . . . . . . . . . . . . 16 (𝑧 = {𝑢𝑤𝑦𝑢} → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2218, 21imbi12d 346 . . . . . . . . . . . . . . 15 (𝑧 = {𝑢𝑤𝑦𝑢} → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})))
2322rspcv 3615 . . . . . . . . . . . . . 14 ({𝑢𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦 → (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})))
2417, 23ax-mp 5 . . . . . . . . . . . . 13 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2513, 24syl5bi 243 . . . . . . . . . . . 12 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑤 ∈ dom 𝑦 → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2625imp 407 . . . . . . . . . . 11 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})
27 fvex 6676 . . . . . . . . . . . 12 (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ V
28 breq2 5061 . . . . . . . . . . . 12 (𝑧 = (𝑓‘{𝑢𝑤𝑦𝑢}) → (𝑤𝑦𝑧𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢})))
29 breq2 5061 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝑤𝑦𝑢𝑤𝑦𝑧))
3029cbvabv 2886 . . . . . . . . . . . 12 {𝑢𝑤𝑦𝑢} = {𝑧𝑤𝑦𝑧}
3127, 28, 30elab2 3667 . . . . . . . . . . 11 ((𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢} ↔ 𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢}))
3226, 31sylib 219 . . . . . . . . . 10 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → 𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢}))
33 breq2 5061 . . . . . . . . . 10 ( = (𝑓‘{𝑢𝑤𝑦𝑢}) → (𝑤𝑦𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢})))
3432, 33syl5ibrcom 248 . . . . . . . . 9 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → ( = (𝑓‘{𝑢𝑤𝑦𝑢}) → 𝑤𝑦))
3534expimpd 454 . . . . . . . 8 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢})) → 𝑤𝑦))
3635ssopab2dv 5429 . . . . . . 7 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))} ⊆ {⟨𝑤, ⟩ ∣ 𝑤𝑦})
37 opabss 5121 . . . . . . 7 {⟨𝑤, ⟩ ∣ 𝑤𝑦} ⊆ 𝑦
3836, 37sstrdi 3976 . . . . . 6 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))} ⊆ 𝑦)
399, 38eqsstrid 4012 . . . . 5 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝐹𝑦)
4027, 7fnmpti 6484 . . . . 5 𝐹 Fn dom 𝑦
411ssex 5216 . . . . . . 7 (𝐹𝑦𝐹 ∈ V)
4241adantr 481 . . . . . 6 ((𝐹𝑦𝐹 Fn dom 𝑦) → 𝐹 ∈ V)
43 sseq1 3989 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔𝑦𝐹𝑦))
44 fneq1 6437 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 Fn dom 𝑦𝐹 Fn dom 𝑦))
4543, 44anbi12d 630 . . . . . . 7 (𝑔 = 𝐹 → ((𝑔𝑦𝑔 Fn dom 𝑦) ↔ (𝐹𝑦𝐹 Fn dom 𝑦)))
4645spcegv 3594 . . . . . 6 (𝐹 ∈ V → ((𝐹𝑦𝐹 Fn dom 𝑦) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦)))
4742, 46mpcom 38 . . . . 5 ((𝐹𝑦𝐹 Fn dom 𝑦) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
4839, 40, 47sylancl 586 . . . 4 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
4948exlimiv 1922 . . 3 (∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
506, 49syl 17 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
51 sseq1 3989 . . . 4 (𝑔 = 𝑓 → (𝑔𝑦𝑓𝑦))
52 fneq1 6437 . . . 4 (𝑔 = 𝑓 → (𝑔 Fn dom 𝑦𝑓 Fn dom 𝑦))
5351, 52anbi12d 630 . . 3 (𝑔 = 𝑓 → ((𝑔𝑦𝑔 Fn dom 𝑦) ↔ (𝑓𝑦𝑓 Fn dom 𝑦)))
5453cbvexvw 2035 . 2 (∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦) ↔ ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
5550, 54sylib 219 1 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1526   = wceq 1528  wex 1771  wcel 2105  {cab 2796  wne 3013  wral 3135  Vcvv 3492  wss 3933  c0 4288  𝒫 cpw 4535   class class class wbr 5057  {copab 5119  cmpt 5137  dom cdm 5548  ran crn 5549   Fn wfn 6343  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356
This theorem is referenced by:  dfac3  9535
  Copyright terms: Public domain W3C validator