| Step | Hyp | Ref
| Expression |
| 1 | | vex 3484 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 2 | 1 | rnex 7932 |
. . . . 5
⊢ ran 𝑦 ∈ V |
| 3 | 2 | pwex 5380 |
. . . 4
⊢ 𝒫
ran 𝑦 ∈
V |
| 4 | | raleq 3323 |
. . . . 5
⊢ (𝑥 = 𝒫 ran 𝑦 → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 5 | 4 | exbidv 1921 |
. . . 4
⊢ (𝑥 = 𝒫 ran 𝑦 → (∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∃𝑓∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 6 | 3, 5 | spcv 3605 |
. . 3
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
| 7 | | aceq3lem.1 |
. . . . . . 7
⊢ 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) |
| 8 | | df-mpt 5226 |
. . . . . . 7
⊢ (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) = {〈𝑤, ℎ〉 ∣ (𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))} |
| 9 | 7, 8 | eqtri 2765 |
. . . . . 6
⊢ 𝐹 = {〈𝑤, ℎ〉 ∣ (𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))} |
| 10 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
| 11 | 10 | eldm 5911 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ dom 𝑦 ↔ ∃𝑢 𝑤𝑦𝑢) |
| 12 | | abn0 4385 |
. . . . . . . . . . . . . 14
⊢ ({𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅ ↔ ∃𝑢 𝑤𝑦𝑢) |
| 13 | 11, 12 | bitr4i 278 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ dom 𝑦 ↔ {𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅) |
| 14 | | vex 3484 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑢 ∈ V |
| 15 | 10, 14 | brelrn 5953 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤𝑦𝑢 → 𝑢 ∈ ran 𝑦) |
| 16 | 15 | abssi 4070 |
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∣ 𝑤𝑦𝑢} ⊆ ran 𝑦 |
| 17 | 2, 16 | elpwi2 5335 |
. . . . . . . . . . . . . 14
⊢ {𝑢 ∣ 𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦 |
| 18 | | neeq1 3003 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → (𝑧 ≠ ∅ ↔ {𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅)) |
| 19 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → (𝑓‘𝑧) = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) |
| 20 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → 𝑧 = {𝑢 ∣ 𝑤𝑦𝑢}) |
| 21 | 19, 20 | eleq12d 2835 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → ((𝑓‘𝑧) ∈ 𝑧 ↔ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢})) |
| 22 | 18, 21 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = {𝑢 ∣ 𝑤𝑦𝑢} → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ({𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢}))) |
| 23 | 22 | rspcv 3618 |
. . . . . . . . . . . . . 14
⊢ ({𝑢 ∣ 𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦 → (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ({𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢}))) |
| 24 | 17, 23 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ({𝑢 ∣ 𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢})) |
| 25 | 13, 24 | biimtrid 242 |
. . . . . . . . . . . 12
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → (𝑤 ∈ dom 𝑦 → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢})) |
| 26 | 25 | imp 406 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢}) |
| 27 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ V |
| 28 | | breq2 5147 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) → (𝑤𝑦𝑧 ↔ 𝑤𝑦(𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))) |
| 29 | | breq2 5147 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → (𝑤𝑦𝑢 ↔ 𝑤𝑦𝑧)) |
| 30 | 29 | cbvabv 2812 |
. . . . . . . . . . . 12
⊢ {𝑢 ∣ 𝑤𝑦𝑢} = {𝑧 ∣ 𝑤𝑦𝑧} |
| 31 | 27, 28, 30 | elab2 3682 |
. . . . . . . . . . 11
⊢ ((𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) ∈ {𝑢 ∣ 𝑤𝑦𝑢} ↔ 𝑤𝑦(𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) |
| 32 | 26, 31 | sylib 218 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → 𝑤𝑦(𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) |
| 33 | | breq2 5147 |
. . . . . . . . . 10
⊢ (ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) → (𝑤𝑦ℎ ↔ 𝑤𝑦(𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))) |
| 34 | 32, 33 | syl5ibrcom 247 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → (ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}) → 𝑤𝑦ℎ)) |
| 35 | 34 | expimpd 453 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ((𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) → 𝑤𝑦ℎ)) |
| 36 | 35 | ssopab2dv 5556 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → {〈𝑤, ℎ〉 ∣ (𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))} ⊆ {〈𝑤, ℎ〉 ∣ 𝑤𝑦ℎ}) |
| 37 | | opabss 5207 |
. . . . . . 7
⊢
{〈𝑤, ℎ〉 ∣ 𝑤𝑦ℎ} ⊆ 𝑦 |
| 38 | 36, 37 | sstrdi 3996 |
. . . . . 6
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → {〈𝑤, ℎ〉 ∣ (𝑤 ∈ dom 𝑦 ∧ ℎ = (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢}))} ⊆ 𝑦) |
| 39 | 9, 38 | eqsstrid 4022 |
. . . . 5
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → 𝐹 ⊆ 𝑦) |
| 40 | 27, 7 | fnmpti 6711 |
. . . . 5
⊢ 𝐹 Fn dom 𝑦 |
| 41 | 1 | ssex 5321 |
. . . . . . 7
⊢ (𝐹 ⊆ 𝑦 → 𝐹 ∈ V) |
| 42 | 41 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦) → 𝐹 ∈ V) |
| 43 | | sseq1 4009 |
. . . . . . . 8
⊢ (𝑔 = 𝐹 → (𝑔 ⊆ 𝑦 ↔ 𝐹 ⊆ 𝑦)) |
| 44 | | fneq1 6659 |
. . . . . . . 8
⊢ (𝑔 = 𝐹 → (𝑔 Fn dom 𝑦 ↔ 𝐹 Fn dom 𝑦)) |
| 45 | 43, 44 | anbi12d 632 |
. . . . . . 7
⊢ (𝑔 = 𝐹 → ((𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦) ↔ (𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦))) |
| 46 | 45 | spcegv 3597 |
. . . . . 6
⊢ (𝐹 ∈ V → ((𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦))) |
| 47 | 42, 46 | mpcom 38 |
. . . . 5
⊢ ((𝐹 ⊆ 𝑦 ∧ 𝐹 Fn dom 𝑦) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦)) |
| 48 | 39, 40, 47 | sylancl 586 |
. . . 4
⊢
(∀𝑧 ∈
𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦)) |
| 49 | 48 | exlimiv 1930 |
. . 3
⊢
(∃𝑓∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦)) |
| 50 | 6, 49 | syl 17 |
. 2
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦)) |
| 51 | | sseq1 4009 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 ⊆ 𝑦 ↔ 𝑓 ⊆ 𝑦)) |
| 52 | | fneq1 6659 |
. . . 4
⊢ (𝑔 = 𝑓 → (𝑔 Fn dom 𝑦 ↔ 𝑓 Fn dom 𝑦)) |
| 53 | 51, 52 | anbi12d 632 |
. . 3
⊢ (𝑔 = 𝑓 → ((𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦) ↔ (𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦))) |
| 54 | 53 | cbvexvw 2036 |
. 2
⊢
(∃𝑔(𝑔 ⊆ 𝑦 ∧ 𝑔 Fn dom 𝑦) ↔ ∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) |
| 55 | 50, 54 | sylib 218 |
1
⊢
(∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) |