MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aceq3lem Structured version   Visualization version   GIF version

Theorem aceq3lem 10080
Description: Lemma for dfac3 10081. (Contributed by NM, 2-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
aceq3lem.1 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢}))
Assertion
Ref Expression
aceq3lem (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑢,𝑓
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓)

Proof of Theorem aceq3lem
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . . 6 𝑦 ∈ V
21rnex 7889 . . . . 5 ran 𝑦 ∈ V
32pwex 5338 . . . 4 𝒫 ran 𝑦 ∈ V
4 raleq 3298 . . . . 5 (𝑥 = 𝒫 ran 𝑦 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
54exbidv 1921 . . . 4 (𝑥 = 𝒫 ran 𝑦 → (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
63, 5spcv 3574 . . 3 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
7 aceq3lem.1 . . . . . . 7 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢}))
8 df-mpt 5192 . . . . . . 7 (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢𝑤𝑦𝑢})) = {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))}
97, 8eqtri 2753 . . . . . 6 𝐹 = {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))}
10 vex 3454 . . . . . . . . . . . . . . 15 𝑤 ∈ V
1110eldm 5867 . . . . . . . . . . . . . 14 (𝑤 ∈ dom 𝑦 ↔ ∃𝑢 𝑤𝑦𝑢)
12 abn0 4351 . . . . . . . . . . . . . 14 ({𝑢𝑤𝑦𝑢} ≠ ∅ ↔ ∃𝑢 𝑤𝑦𝑢)
1311, 12bitr4i 278 . . . . . . . . . . . . 13 (𝑤 ∈ dom 𝑦 ↔ {𝑢𝑤𝑦𝑢} ≠ ∅)
14 vex 3454 . . . . . . . . . . . . . . . . 17 𝑢 ∈ V
1510, 14brelrn 5909 . . . . . . . . . . . . . . . 16 (𝑤𝑦𝑢𝑢 ∈ ran 𝑦)
1615abssi 4036 . . . . . . . . . . . . . . 15 {𝑢𝑤𝑦𝑢} ⊆ ran 𝑦
172, 16elpwi2 5293 . . . . . . . . . . . . . 14 {𝑢𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦
18 neeq1 2988 . . . . . . . . . . . . . . . 16 (𝑧 = {𝑢𝑤𝑦𝑢} → (𝑧 ≠ ∅ ↔ {𝑢𝑤𝑦𝑢} ≠ ∅))
19 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑧 = {𝑢𝑤𝑦𝑢} → (𝑓𝑧) = (𝑓‘{𝑢𝑤𝑦𝑢}))
20 id 22 . . . . . . . . . . . . . . . . 17 (𝑧 = {𝑢𝑤𝑦𝑢} → 𝑧 = {𝑢𝑤𝑦𝑢})
2119, 20eleq12d 2823 . . . . . . . . . . . . . . . 16 (𝑧 = {𝑢𝑤𝑦𝑢} → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2218, 21imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = {𝑢𝑤𝑦𝑢} → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})))
2322rspcv 3587 . . . . . . . . . . . . . 14 ({𝑢𝑤𝑦𝑢} ∈ 𝒫 ran 𝑦 → (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})))
2417, 23ax-mp 5 . . . . . . . . . . . . 13 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ({𝑢𝑤𝑦𝑢} ≠ ∅ → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2513, 24biimtrid 242 . . . . . . . . . . . 12 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑤 ∈ dom 𝑦 → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢}))
2625imp 406 . . . . . . . . . . 11 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢})
27 fvex 6874 . . . . . . . . . . . 12 (𝑓‘{𝑢𝑤𝑦𝑢}) ∈ V
28 breq2 5114 . . . . . . . . . . . 12 (𝑧 = (𝑓‘{𝑢𝑤𝑦𝑢}) → (𝑤𝑦𝑧𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢})))
29 breq2 5114 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (𝑤𝑦𝑢𝑤𝑦𝑧))
3029cbvabv 2800 . . . . . . . . . . . 12 {𝑢𝑤𝑦𝑢} = {𝑧𝑤𝑦𝑧}
3127, 28, 30elab2 3652 . . . . . . . . . . 11 ((𝑓‘{𝑢𝑤𝑦𝑢}) ∈ {𝑢𝑤𝑦𝑢} ↔ 𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢}))
3226, 31sylib 218 . . . . . . . . . 10 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → 𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢}))
33 breq2 5114 . . . . . . . . . 10 ( = (𝑓‘{𝑢𝑤𝑦𝑢}) → (𝑤𝑦𝑤𝑦(𝑓‘{𝑢𝑤𝑦𝑢})))
3432, 33syl5ibrcom 247 . . . . . . . . 9 ((∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤 ∈ dom 𝑦) → ( = (𝑓‘{𝑢𝑤𝑦𝑢}) → 𝑤𝑦))
3534expimpd 453 . . . . . . . 8 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢})) → 𝑤𝑦))
3635ssopab2dv 5514 . . . . . . 7 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))} ⊆ {⟨𝑤, ⟩ ∣ 𝑤𝑦})
37 opabss 5174 . . . . . . 7 {⟨𝑤, ⟩ ∣ 𝑤𝑦} ⊆ 𝑦
3836, 37sstrdi 3962 . . . . . 6 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → {⟨𝑤, ⟩ ∣ (𝑤 ∈ dom 𝑦 = (𝑓‘{𝑢𝑤𝑦𝑢}))} ⊆ 𝑦)
399, 38eqsstrid 3988 . . . . 5 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → 𝐹𝑦)
4027, 7fnmpti 6664 . . . . 5 𝐹 Fn dom 𝑦
411ssex 5279 . . . . . . 7 (𝐹𝑦𝐹 ∈ V)
4241adantr 480 . . . . . 6 ((𝐹𝑦𝐹 Fn dom 𝑦) → 𝐹 ∈ V)
43 sseq1 3975 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔𝑦𝐹𝑦))
44 fneq1 6612 . . . . . . . 8 (𝑔 = 𝐹 → (𝑔 Fn dom 𝑦𝐹 Fn dom 𝑦))
4543, 44anbi12d 632 . . . . . . 7 (𝑔 = 𝐹 → ((𝑔𝑦𝑔 Fn dom 𝑦) ↔ (𝐹𝑦𝐹 Fn dom 𝑦)))
4645spcegv 3566 . . . . . 6 (𝐹 ∈ V → ((𝐹𝑦𝐹 Fn dom 𝑦) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦)))
4742, 46mpcom 38 . . . . 5 ((𝐹𝑦𝐹 Fn dom 𝑦) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
4839, 40, 47sylancl 586 . . . 4 (∀𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
4948exlimiv 1930 . . 3 (∃𝑓𝑧 ∈ 𝒫 ran 𝑦(𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
506, 49syl 17 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦))
51 sseq1 3975 . . . 4 (𝑔 = 𝑓 → (𝑔𝑦𝑓𝑦))
52 fneq1 6612 . . . 4 (𝑔 = 𝑓 → (𝑔 Fn dom 𝑦𝑓 Fn dom 𝑦))
5351, 52anbi12d 632 . . 3 (𝑔 = 𝑓 → ((𝑔𝑦𝑔 Fn dom 𝑦) ↔ (𝑓𝑦𝑓 Fn dom 𝑦)))
5453cbvexvw 2037 . 2 (∃𝑔(𝑔𝑦𝑔 Fn dom 𝑦) ↔ ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
5550, 54sylib 218 1 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑓(𝑓𝑦𝑓 Fn dom 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   class class class wbr 5110  {copab 5172  cmpt 5191  dom cdm 5641  ran crn 5642   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  dfac3  10081
  Copyright terms: Public domain W3C validator