| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wksv | Structured version Visualization version GIF version | ||
| Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| wksv | ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6871 | . 2 ⊢ (Walks‘𝐺) ∈ V | |
| 2 | opabss 5171 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ⊆ (Walks‘𝐺) | |
| 3 | 1, 2 | ssexi 5277 | 1 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 {copab 5169 ‘cfv 6511 Walkscwlks 29524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-br 5108 df-opab 5170 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: wlkResOLD 29578 wksonproplemOLD 29633 |
| Copyright terms: Public domain | W3C validator |