![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wksv | Structured version Visualization version GIF version |
Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
wksv | ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . 2 ⊢ (Walks‘𝐺) ∈ V | |
2 | opabss 5230 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ⊆ (Walks‘𝐺) | |
3 | 1, 2 | ssexi 5340 | 1 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 {copab 5228 ‘cfv 6573 Walkscwlks 29632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-br 5167 df-opab 5229 df-iota 6525 df-fv 6581 |
This theorem is referenced by: wlkResOLD 29686 wksonproplemOLD 29741 |
Copyright terms: Public domain | W3C validator |