MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksv Structured version   Visualization version   GIF version

Theorem wksv 29655
Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.)
Assertion
Ref Expression
wksv {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem wksv
StepHypRef Expression
1 fvex 6933 . 2 (Walks‘𝐺) ∈ V
2 opabss 5230 . 2 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ⊆ (Walks‘𝐺)
31, 2ssexi 5340 1 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488   class class class wbr 5166  {copab 5228  cfv 6573  Walkscwlks 29632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-br 5167  df-opab 5229  df-iota 6525  df-fv 6581
This theorem is referenced by:  wlkResOLD  29686  wksonproplemOLD  29741
  Copyright terms: Public domain W3C validator