MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksv Structured version   Visualization version   GIF version

Theorem wksv 29652
Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.)
Assertion
Ref Expression
wksv {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem wksv
StepHypRef Expression
1 fvex 6920 . 2 (Walks‘𝐺) ∈ V
2 opabss 5212 . 2 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ⊆ (Walks‘𝐺)
31, 2ssexi 5328 1 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478   class class class wbr 5148  {copab 5210  cfv 6563  Walkscwlks 29629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-sn 4632  df-pr 4634  df-uni 4913  df-br 5149  df-opab 5211  df-iota 6516  df-fv 6571
This theorem is referenced by:  wlkResOLD  29683  wksonproplemOLD  29738
  Copyright terms: Public domain W3C validator