| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wksv | Structured version Visualization version GIF version | ||
| Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| wksv | ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6878 | . 2 ⊢ (Walks‘𝐺) ∈ V | |
| 2 | opabss 5179 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ⊆ (Walks‘𝐺) | |
| 3 | 1, 2 | ssexi 5285 | 1 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3455 class class class wbr 5115 {copab 5177 ‘cfv 6519 Walkscwlks 29531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-sn 4598 df-pr 4600 df-uni 4880 df-br 5116 df-opab 5178 df-iota 6472 df-fv 6527 |
| This theorem is referenced by: wlkResOLD 29585 wksonproplemOLD 29640 |
| Copyright terms: Public domain | W3C validator |