MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksv Structured version   Visualization version   GIF version

Theorem wksv 29144
Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.)
Assertion
Ref Expression
wksv {βŸ¨π‘“, π‘βŸ© ∣ 𝑓(Walksβ€˜πΊ)𝑝} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem wksv
StepHypRef Expression
1 fvex 6904 . 2 (Walksβ€˜πΊ) ∈ V
2 opabss 5212 . 2 {βŸ¨π‘“, π‘βŸ© ∣ 𝑓(Walksβ€˜πΊ)𝑝} βŠ† (Walksβ€˜πΊ)
31, 2ssexi 5322 1 {βŸ¨π‘“, π‘βŸ© ∣ 𝑓(Walksβ€˜πΊ)𝑝} ∈ V
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2105  Vcvv 3473   class class class wbr 5148  {copab 5210  β€˜cfv 6543  Walkscwlks 29121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909  df-br 5149  df-opab 5211  df-iota 6495  df-fv 6551
This theorem is referenced by:  wlkResOLD  29175  wksonproplemOLD  29230
  Copyright terms: Public domain W3C validator