MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksv Structured version   Visualization version   GIF version

Theorem wksv 29637
Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.)
Assertion
Ref Expression
wksv {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem wksv
StepHypRef Expression
1 fvex 6919 . 2 (Walks‘𝐺) ∈ V
2 opabss 5207 . 2 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ⊆ (Walks‘𝐺)
31, 2ssexi 5322 1 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3480   class class class wbr 5143  {copab 5205  cfv 6561  Walkscwlks 29614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-sn 4627  df-pr 4629  df-uni 4908  df-br 5144  df-opab 5206  df-iota 6514  df-fv 6569
This theorem is referenced by:  wlkResOLD  29668  wksonproplemOLD  29723
  Copyright terms: Public domain W3C validator