Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wksv | Structured version Visualization version GIF version |
Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
wksv | ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6825 | . 2 ⊢ (Walks‘𝐺) ∈ V | |
2 | opabss 5151 | . 2 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ⊆ (Walks‘𝐺) | |
3 | 1, 2 | ssexi 5261 | 1 ⊢ {〈𝑓, 𝑝〉 ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 class class class wbr 5087 {copab 5149 ‘cfv 6466 Walkscwlks 28099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-sn 4572 df-pr 4574 df-uni 4851 df-br 5088 df-opab 5150 df-iota 6418 df-fv 6474 |
This theorem is referenced by: wlkResOLD 28153 wksonproplemOLD 28209 |
Copyright terms: Public domain | W3C validator |