MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wksv Structured version   Visualization version   GIF version

Theorem wksv 29598
Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021.) (Proof shortened by SN, 11-Dec-2024.)
Assertion
Ref Expression
wksv {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem wksv
StepHypRef Expression
1 fvex 6835 . 2 (Walks‘𝐺) ∈ V
2 opabss 5153 . 2 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ⊆ (Walks‘𝐺)
31, 2ssexi 5258 1 {⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436   class class class wbr 5089  {copab 5151  cfv 6481  Walkscwlks 29575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-uni 4857  df-br 5090  df-opab 5152  df-iota 6437  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator