MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeldmd Structured version   Visualization version   GIF version

Theorem opeldmd 5870
Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm 5871. (Contributed by AV, 11-Mar-2021.)
Hypotheses
Ref Expression
opeldmd.1 (𝜑𝐴𝑉)
opeldmd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
opeldmd (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))

Proof of Theorem opeldmd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeldmd.2 . . 3 (𝜑𝐵𝑊)
2 opeq2 4838 . . . . 5 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
32eleq1d 2813 . . . 4 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
43spcegv 3563 . . 3 (𝐵𝑊 → (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
51, 4syl 17 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
6 opeldmd.1 . . 3 (𝜑𝐴𝑉)
7 eldm2g 5863 . . 3 (𝐴𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
86, 7syl 17 . 2 (𝜑 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
95, 8sylibrd 259 1 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  cop 4595  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-dm 5648
This theorem is referenced by:  eupth2eucrct  30146  tfsconcatb0  43333
  Copyright terms: Public domain W3C validator