MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeldmd Structured version   Visualization version   GIF version

Theorem opeldmd 5804
Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm 5805. (Contributed by AV, 11-Mar-2021.)
Hypotheses
Ref Expression
opeldmd.1 (𝜑𝐴𝑉)
opeldmd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
opeldmd (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))

Proof of Theorem opeldmd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeldmd.2 . . 3 (𝜑𝐵𝑊)
2 opeq2 4802 . . . . 5 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
32eleq1d 2823 . . . 4 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
43spcegv 3526 . . 3 (𝐵𝑊 → (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
51, 4syl 17 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
6 opeldmd.1 . . 3 (𝜑𝐴𝑉)
7 eldm2g 5797 . . 3 (𝐴𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
86, 7syl 17 . 2 (𝜑 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
95, 8sylibrd 258 1 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wex 1783  wcel 2108  cop 4564  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-dm 5590
This theorem is referenced by:  eupth2eucrct  28482
  Copyright terms: Public domain W3C validator