| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeldmd | Structured version Visualization version GIF version | ||
| Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm 5842. (Contributed by AV, 11-Mar-2021.) |
| Ref | Expression |
|---|---|
| opeldmd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| opeldmd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| opeldmd | ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeldmd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | opeq2 4821 | . . . . 5 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 3 | 2 | eleq1d 2816 | . . . 4 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
| 4 | 3 | spcegv 3547 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 6 | opeldmd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | eldm2g 5834 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 9 | 5, 8 | sylibrd 259 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4577 dom cdm 5611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-dm 5621 |
| This theorem is referenced by: eupth2eucrct 30189 tfsconcatb0 43377 |
| Copyright terms: Public domain | W3C validator |