MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeldmd Structured version   Visualization version   GIF version

Theorem opeldmd 5774
Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm 5775. (Contributed by AV, 11-Mar-2021.)
Hypotheses
Ref Expression
opeldmd.1 (𝜑𝐴𝑉)
opeldmd.2 (𝜑𝐵𝑊)
Assertion
Ref Expression
opeldmd (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))

Proof of Theorem opeldmd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeldmd.2 . . 3 (𝜑𝐵𝑊)
2 opeq2 4803 . . . . 5 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
32eleq1d 2902 . . . 4 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
43spcegv 3602 . . 3 (𝐵𝑊 → (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
51, 4syl 17 . 2 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
6 opeldmd.1 . . 3 (𝜑𝐴𝑉)
7 eldm2g 5767 . . 3 (𝐴𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
86, 7syl 17 . 2 (𝜑 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶))
95, 8sylibrd 260 1 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1530  wex 1773  wcel 2107  cop 4570  dom cdm 5554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-rab 3152  df-v 3502  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-br 5064  df-dm 5564
This theorem is referenced by:  eupth2eucrct  27929
  Copyright terms: Public domain W3C validator