![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeldmd | Structured version Visualization version GIF version |
Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm 5921. (Contributed by AV, 11-Mar-2021.) |
Ref | Expression |
---|---|
opeldmd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opeldmd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
opeldmd | ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldmd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | opeq2 4879 | . . . . 5 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
3 | 2 | eleq1d 2824 | . . . 4 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
4 | 3 | spcegv 3597 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
6 | opeldmd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | eldm2g 5913 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
9 | 5, 8 | sylibrd 259 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 〈cop 4637 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-dm 5699 |
This theorem is referenced by: eupth2eucrct 30246 tfsconcatb0 43334 |
Copyright terms: Public domain | W3C validator |