MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeldm Structured version   Visualization version   GIF version

Theorem opeldm 5887
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion
Ref Expression
opeldm (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)

Proof of Theorem opeldm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeldm.2 . . 3 𝐵 ∈ V
2 opeq2 4850 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
32eleq1d 2819 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
41, 3spcev 3585 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
5 opeldm.1 . . 3 𝐴 ∈ V
65eldm2 5881 . 2 (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
74, 6sylibr 234 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  cop 4607  dom cdm 5654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-dm 5664
This theorem is referenced by:  breldm  5888  elreldm  5915  relssres  6009  iss  6022  imadmrn  6057  dfco2a  6235  relssdmrn  6257  funssres  6580  funun  6582  frxp2  8143  frxp3  8150  frrlem8  8292  frrlem10  8294  tz7.48-1  8457  iiner  8803  r0weon  10026  axdc3lem2  10465  uzrdgfni  13976  imasaddfnlem  17542  imasvscafn  17551  cicsym  17817  gsum2d  19953  noseqrdgfn  28252  cffldtocusgr  29426  cffldtocusgrOLD  29427  dfcnv2  32654  gsumfs2d  33049  bnj1379  34861  iss2  38362  rfovcnvf1od  44028
  Copyright terms: Public domain W3C validator