| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opeldm | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | opeq2 4834 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 3 | 2 | eleq1d 2813 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
| 4 | 1, 3 | spcev 3569 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
| 5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | 5 | eldm2 5855 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
| 7 | 4, 6 | sylibr 234 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 〈cop 4591 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-dm 5641 |
| This theorem is referenced by: breldm 5862 elreldm 5888 relssres 5982 iss 5995 imadmrn 6030 dfco2a 6207 relssdmrn 6229 funssres 6544 funun 6546 frxp2 8100 frxp3 8107 frrlem8 8249 frrlem10 8251 tz7.48-1 8388 iiner 8739 r0weon 9941 axdc3lem2 10380 uzrdgfni 13899 imasaddfnlem 17467 imasvscafn 17476 cicsym 17742 gsum2d 19878 noseqrdgfn 28176 cffldtocusgr 29350 cffldtocusgrOLD 29351 dfcnv2 32573 gsumfs2d 32968 bnj1379 34793 iss2 38299 rfovcnvf1od 43966 |
| Copyright terms: Public domain | W3C validator |