![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeldm | Structured version Visualization version GIF version |
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeldm | ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | opeq2 4875 | . . . 4 ⊢ (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩) | |
3 | 2 | eleq1d 2819 | . . 3 ⊢ (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶)) |
4 | 1, 3 | spcev 3597 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦⟨𝐴, 𝑦⟩ ∈ 𝐶) |
5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5 | eldm2 5902 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦⟨𝐴, 𝑦⟩ ∈ 𝐶) |
7 | 4, 6 | sylibr 233 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-dm 5687 |
This theorem is referenced by: breldm 5909 elreldm 5935 relssres 6023 iss 6036 imadmrn 6070 dfco2a 6246 relssdmrn 6268 funssres 6593 funun 6595 frxp2 8130 frxp3 8137 frrlem8 8278 frrlem10 8280 tz7.48-1 8443 iiner 8783 r0weon 10007 axdc3lem2 10446 uzrdgfni 13923 imasaddfnlem 17474 imasvscafn 17483 cicsym 17751 gsum2d 19840 cffldtocusgr 28735 dfcnv2 31932 bnj1379 33872 gg-cffldtocusgr 35230 iss2 37261 rfovcnvf1od 42803 |
Copyright terms: Public domain | W3C validator |