MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeldm Structured version   Visualization version   GIF version

Theorem opeldm 5932
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion
Ref Expression
opeldm (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)

Proof of Theorem opeldm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeldm.2 . . 3 𝐵 ∈ V
2 opeq2 4898 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
32eleq1d 2829 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
41, 3spcev 3619 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
5 opeldm.1 . . 3 𝐴 ∈ V
65eldm2 5926 . 2 (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
74, 6sylibr 234 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cop 4654  dom cdm 5700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-dm 5710
This theorem is referenced by:  breldm  5933  elreldm  5960  relssres  6051  iss  6064  imadmrn  6099  dfco2a  6277  relssdmrn  6299  funssres  6622  funun  6624  frxp2  8185  frxp3  8192  frrlem8  8334  frrlem10  8336  tz7.48-1  8499  iiner  8847  r0weon  10081  axdc3lem2  10520  uzrdgfni  14009  imasaddfnlem  17588  imasvscafn  17597  cicsym  17865  gsum2d  20014  noseqrdgfn  28330  cffldtocusgr  29482  cffldtocusgrOLD  29483  dfcnv2  32694  bnj1379  34806  iss2  38300  rfovcnvf1od  43966
  Copyright terms: Public domain W3C validator