| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opeldm | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | opeq2 4823 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 3 | 2 | eleq1d 2816 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
| 4 | 1, 3 | spcev 3556 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
| 5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | 5 | eldm2 5840 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
| 7 | 4, 6 | sylibr 234 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 〈cop 4579 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-dm 5624 |
| This theorem is referenced by: breldm 5847 elreldm 5874 relssres 5970 iss 5983 imadmrn 6018 dfco2a 6193 relssdmrn 6216 funssres 6525 funun 6527 frxp2 8074 frxp3 8081 frrlem8 8223 frrlem10 8225 tz7.48-1 8362 iiner 8713 r0weon 9903 axdc3lem2 10342 uzrdgfni 13865 imasaddfnlem 17432 imasvscafn 17441 cicsym 17711 gsum2d 19884 noseqrdgfn 28236 cffldtocusgr 29425 cffldtocusgrOLD 29426 dfcnv2 32658 gsumfs2d 33035 bnj1379 34842 iss2 38386 rfovcnvf1od 44107 |
| Copyright terms: Public domain | W3C validator |