Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeldm | Structured version Visualization version GIF version |
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeldm | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | opeq2 4764 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
3 | 2 | eleq1d 2837 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
4 | 1, 3 | spcev 3526 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5 | eldm2 5742 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
7 | 4, 6 | sylibr 237 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1782 ∈ wcel 2112 Vcvv 3410 〈cop 4529 dom cdm 5525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-un 3864 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-dm 5535 |
This theorem is referenced by: breldm 5749 elreldm 5777 relssres 5865 iss 5876 imadmrn 5912 dfco2a 6077 funssres 6380 funun 6382 tz7.48-1 8090 iiner 8380 r0weon 9473 axdc3lem2 9912 uzrdgfni 13376 imasaddfnlem 16860 imasvscafn 16869 cicsym 17134 gsum2d 19161 cffldtocusgr 27337 dfcnv2 30538 bnj1379 32331 frxp2 33347 frxp3 33353 frrlem8 33392 frrlem10 33394 iss2 36042 rfovcnvf1od 41079 |
Copyright terms: Public domain | W3C validator |