![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeldm | Structured version Visualization version GIF version |
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeldm | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | opeq2 4898 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
3 | 2 | eleq1d 2829 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
4 | 1, 3 | spcev 3619 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5 | eldm2 5926 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
7 | 4, 6 | sylibr 234 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 〈cop 4654 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: breldm 5933 elreldm 5960 relssres 6051 iss 6064 imadmrn 6099 dfco2a 6277 relssdmrn 6299 funssres 6622 funun 6624 frxp2 8185 frxp3 8192 frrlem8 8334 frrlem10 8336 tz7.48-1 8499 iiner 8847 r0weon 10081 axdc3lem2 10520 uzrdgfni 14009 imasaddfnlem 17588 imasvscafn 17597 cicsym 17865 gsum2d 20014 noseqrdgfn 28330 cffldtocusgr 29482 cffldtocusgrOLD 29483 dfcnv2 32694 bnj1379 34806 iss2 38300 rfovcnvf1od 43966 |
Copyright terms: Public domain | W3C validator |