Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeldm | Structured version Visualization version GIF version |
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
opeldm.1 | ⊢ 𝐴 ∈ V |
opeldm.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeldm | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | opeq2 4805 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
3 | 2 | eleq1d 2823 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
4 | 1, 3 | spcev 3545 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
6 | 5 | eldm2 5810 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
7 | 4, 6 | sylibr 233 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 〈cop 4567 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-dm 5599 |
This theorem is referenced by: breldm 5817 elreldm 5844 relssres 5932 iss 5943 imadmrn 5979 dfco2a 6150 funssres 6478 funun 6480 frrlem8 8109 frrlem10 8111 tz7.48-1 8274 iiner 8578 r0weon 9768 axdc3lem2 10207 uzrdgfni 13678 imasaddfnlem 17239 imasvscafn 17248 cicsym 17516 gsum2d 19573 cffldtocusgr 27814 dfcnv2 31013 bnj1379 32810 frxp2 33791 frxp3 33797 iss2 36479 rfovcnvf1od 41612 |
Copyright terms: Public domain | W3C validator |