MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeldm Structured version   Visualization version   GIF version

Theorem opeldm 5805
Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
Hypotheses
Ref Expression
opeldm.1 𝐴 ∈ V
opeldm.2 𝐵 ∈ V
Assertion
Ref Expression
opeldm (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)

Proof of Theorem opeldm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 opeldm.2 . . 3 𝐵 ∈ V
2 opeq2 4802 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
32eleq1d 2823 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ ∈ 𝐶 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶))
41, 3spcev 3535 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
5 opeldm.1 . . 3 𝐴 ∈ V
65eldm2 5799 . 2 (𝐴 ∈ dom 𝐶 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐶)
74, 6sylibr 233 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 ∈ dom 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  cop 4564  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-dm 5590
This theorem is referenced by:  breldm  5806  elreldm  5833  relssres  5921  iss  5932  imadmrn  5968  dfco2a  6139  funssres  6462  funun  6464  frrlem8  8080  frrlem10  8082  tz7.48-1  8244  iiner  8536  r0weon  9699  axdc3lem2  10138  uzrdgfni  13606  imasaddfnlem  17156  imasvscafn  17165  cicsym  17433  gsum2d  19488  cffldtocusgr  27717  dfcnv2  30915  bnj1379  32710  frxp2  33718  frxp3  33724  iss2  36406  rfovcnvf1od  41501
  Copyright terms: Public domain W3C validator