| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeldm | Structured version Visualization version GIF version | ||
| Description: Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| opeldm.1 | ⊢ 𝐴 ∈ V |
| opeldm.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opeldm | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeldm.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | opeq2 4825 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 3 | 2 | eleq1d 2813 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
| 4 | 1, 3 | spcev 3561 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
| 5 | opeldm.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 6 | 5 | eldm2 5844 | . 2 ⊢ (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶) |
| 7 | 4, 6 | sylibr 234 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 〈cop 4583 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-dm 5629 |
| This theorem is referenced by: breldm 5851 elreldm 5877 relssres 5973 iss 5986 imadmrn 6021 dfco2a 6195 relssdmrn 6217 funssres 6526 funun 6528 frxp2 8077 frxp3 8084 frrlem8 8226 frrlem10 8228 tz7.48-1 8365 iiner 8716 r0weon 9906 axdc3lem2 10345 uzrdgfni 13865 imasaddfnlem 17432 imasvscafn 17441 cicsym 17711 gsum2d 19851 noseqrdgfn 28205 cffldtocusgr 29392 cffldtocusgrOLD 29393 dfcnv2 32619 gsumfs2d 33008 bnj1379 34797 iss2 38316 rfovcnvf1od 43981 |
| Copyright terms: Public domain | W3C validator |