Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldm2g | Structured version Visualization version GIF version |
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
eldm2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5796 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
2 | df-br 5071 | . . 3 ⊢ (𝐴𝐵𝑦 ↔ 〈𝐴, 𝑦〉 ∈ 𝐵) | |
3 | 2 | exbii 1851 | . 2 ⊢ (∃𝑦 𝐴𝐵𝑦 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
4 | 1, 3 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1783 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 |
This theorem is referenced by: eldm2 5799 opeldmd 5804 dmfco 6846 releldm2 7857 tfrlem9 8187 climcau 15310 caucvgb 15319 lmff 22360 axhcompl-zf 29261 satfdmlem 33230 dfatdmfcoafv2 44633 |
Copyright terms: Public domain | W3C validator |