MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm2g Structured version   Visualization version   GIF version

Theorem eldm2g 5838
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 5837 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
2 df-br 5090 . . 3 (𝐴𝐵𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐵)
32exbii 1849 . 2 (∃𝑦 𝐴𝐵𝑦 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
41, 3bitrdi 287 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1780  wcel 2111  cop 4579   class class class wbr 5089  dom cdm 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-dm 5624
This theorem is referenced by:  eldm2  5840  opeldmd  5845  dmfco  6918  releldm2  7975  tfrlem9  8304  climcau  15578  caucvgb  15587  lmff  23216  axhcompl-zf  30978  satfdmlem  35412  dfatdmfcoafv2  47364
  Copyright terms: Public domain W3C validator