| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldm2g | Structured version Visualization version GIF version | ||
| Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| eldm2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg 5883 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) | |
| 2 | df-br 5125 | . . 3 ⊢ (𝐴𝐵𝑦 ↔ 〈𝐴, 𝑦〉 ∈ 𝐵) | |
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑦 𝐴𝐵𝑦 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
| 4 | 1, 3 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1779 ∈ wcel 2109 〈cop 4612 class class class wbr 5124 dom cdm 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-dm 5669 |
| This theorem is referenced by: eldm2 5886 opeldmd 5891 dmfco 6980 releldm2 8047 tfrlem9 8404 climcau 15692 caucvgb 15701 lmff 23244 axhcompl-zf 30984 satfdmlem 35395 dfatdmfcoafv2 47250 |
| Copyright terms: Public domain | W3C validator |