MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm2g Structured version   Visualization version   GIF version

Theorem eldm2g 5853
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 5852 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
2 df-br 5103 . . 3 (𝐴𝐵𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐵)
32exbii 1848 . 2 (∃𝑦 𝐴𝐵𝑦 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
41, 3bitrdi 287 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wex 1779  wcel 2109  cop 4591   class class class wbr 5102  dom cdm 5631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-dm 5641
This theorem is referenced by:  eldm2  5855  opeldmd  5860  dmfco  6939  releldm2  8001  tfrlem9  8330  climcau  15613  caucvgb  15622  lmff  23221  axhcompl-zf  30977  satfdmlem  35348  dfatdmfcoafv2  47248
  Copyright terms: Public domain W3C validator