MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm2g Structured version   Visualization version   GIF version

Theorem eldm2g 5808
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldm2g (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldm2g
StepHypRef Expression
1 eldmg 5807 . 2 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
2 df-br 5075 . . 3 (𝐴𝐵𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐵)
32exbii 1850 . 2 (∃𝑦 𝐴𝐵𝑦 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
41, 3bitrdi 287 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1782  wcel 2106  cop 4567   class class class wbr 5074  dom cdm 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-dm 5599
This theorem is referenced by:  eldm2  5810  opeldmd  5815  dmfco  6864  releldm2  7884  tfrlem9  8216  climcau  15382  caucvgb  15391  lmff  22452  axhcompl-zf  29360  satfdmlem  33330  dfatdmfcoafv2  44746
  Copyright terms: Public domain W3C validator