MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnz Structured version   Visualization version   GIF version

Theorem opnz 5469
Description: An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opnz (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem opnz
StepHypRef Expression
1 opprc 4892 . . 3 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
21necon1ai 2964 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 dfopg 4867 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
4 snex 5427 . . . . 5 {𝐴} ∈ V
54prnz 4777 . . . 4 {{𝐴}, {𝐴, 𝐵}} ≠ ∅
65a1i 11 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} ≠ ∅)
73, 6eqnetrd 3004 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ≠ ∅)
82, 7impbii 208 1 (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2099  wne 2936  Vcvv 3470  c0 4318  {csn 4624  {cpr 4626  cop 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631
This theorem is referenced by:  opnzi  5470  opeqex  5494  opelopabsb  5526  setsfun0  17134  fmlaomn0  34994
  Copyright terms: Public domain W3C validator