| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opnz | Structured version Visualization version GIF version | ||
| Description: An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opnz | ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprc 4848 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
| 2 | 1 | necon1ai 2955 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 3 | dfopg 4823 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | snex 5374 | . . . . 5 ⊢ {𝐴} ∈ V | |
| 5 | 4 | prnz 4730 | . . . 4 ⊢ {{𝐴}, {𝐴, 𝐵}} ≠ ∅ |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} ≠ ∅) |
| 7 | 3, 6 | eqnetrd 2995 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ≠ ∅) |
| 8 | 2, 7 | impbii 209 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4283 {csn 4576 {cpr 4578 〈cop 4582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 |
| This theorem is referenced by: opnzi 5414 opeqex 5438 opelopabsb 5470 setsfun0 17080 fmlaomn0 35422 |
| Copyright terms: Public domain | W3C validator |