![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnz | Structured version Visualization version GIF version |
Description: An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opnz | ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprc 4920 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
2 | 1 | necon1ai 2974 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | dfopg 4895 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
4 | snex 5451 | . . . . 5 ⊢ {𝐴} ∈ V | |
5 | 4 | prnz 4802 | . . . 4 ⊢ {{𝐴}, {𝐴, 𝐵}} ≠ ∅ |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} ≠ ∅) |
7 | 3, 6 | eqnetrd 3014 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 ≠ ∅) |
8 | 2, 7 | impbii 209 | 1 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 {csn 4648 {cpr 4650 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: opnzi 5494 opeqex 5517 opelopabsb 5549 setsfun0 17219 fmlaomn0 35358 |
Copyright terms: Public domain | W3C validator |