![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opnz | Structured version Visualization version GIF version |
Description: An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opnz | ⊢ (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprc 4889 | . . 3 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅) | |
2 | 1 | necon1ai 2960 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ≠ ∅ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | dfopg 4864 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}) | |
4 | snex 5422 | . . . . 5 ⊢ {𝐴} ∈ V | |
5 | 4 | prnz 4774 | . . . 4 ⊢ {{𝐴}, {𝐴, 𝐵}} ≠ ∅ |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {{𝐴}, {𝐴, 𝐵}} ≠ ∅) |
7 | 3, 6 | eqnetrd 3000 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ ≠ ∅) |
8 | 2, 7 | impbii 208 | 1 ⊢ (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ≠ wne 2932 Vcvv 3466 ∅c0 4315 {csn 4621 {cpr 4623 ⟨cop 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 |
This theorem is referenced by: opnzi 5465 opeqex 5489 opelopabsb 5521 setsfun0 17106 fmlaomn0 34872 |
Copyright terms: Public domain | W3C validator |