![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniopel | Structured version Visualization version GIF version |
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | ⊢ 𝐴 ∈ V |
opthw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniopel | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | uniop 5521 | . . 3 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
4 | 1, 2 | opi2 5475 | . . 3 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
5 | 3, 4 | eqeltri 2822 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 ∈ 〈𝐴, 𝐵〉 |
6 | elssuni 4945 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 〈𝐴, 𝐵〉 ⊆ ∪ 𝐶) | |
7 | 6 | sseld 3978 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (∪ 〈𝐴, 𝐵〉 ∈ 〈𝐴, 𝐵〉 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶)) |
8 | 5, 7 | mpi 20 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Vcvv 3462 {cpr 4635 〈cop 4639 ∪ cuni 4913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 |
This theorem is referenced by: dmrnssfld 5977 unielrel 6285 |
Copyright terms: Public domain | W3C validator |