| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniopel | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opthw.1 | ⊢ 𝐴 ∈ V |
| opthw.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| uniopel | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | uniop 5453 | . . 3 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
| 4 | 1, 2 | opi2 5407 | . . 3 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| 5 | 3, 4 | eqeltri 2827 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 ∈ 〈𝐴, 𝐵〉 |
| 6 | elssuni 4887 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 〈𝐴, 𝐵〉 ⊆ ∪ 𝐶) | |
| 7 | 6 | sseld 3928 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (∪ 〈𝐴, 𝐵〉 ∈ 〈𝐴, 𝐵〉 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶)) |
| 8 | 5, 7 | mpi 20 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 {cpr 4575 〈cop 4579 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 |
| This theorem is referenced by: dmrnssfld 5912 unielrel 6221 |
| Copyright terms: Public domain | W3C validator |