MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniopel Structured version   Visualization version   GIF version

Theorem uniopel 5430
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion
Ref Expression
uniopel (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)

Proof of Theorem uniopel
StepHypRef Expression
1 opthw.1 . . . 4 𝐴 ∈ V
2 opthw.2 . . . 4 𝐵 ∈ V
31, 2uniop 5429 . . 3 𝐴, 𝐵⟩ = {𝐴, 𝐵}
41, 2opi2 5384 . . 3 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
53, 4eqeltri 2835 . 2 𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵
6 elssuni 4871 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ⟨𝐴, 𝐵⟩ ⊆ 𝐶)
76sseld 3920 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵⟩ → 𝐴, 𝐵⟩ ∈ 𝐶))
85, 7mpi 20 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  {cpr 4563  cop 4567   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840
This theorem is referenced by:  dmrnssfld  5879  unielrel  6177
  Copyright terms: Public domain W3C validator