|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > uniopel | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| opthw.1 | ⊢ 𝐴 ∈ V | 
| opthw.2 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| uniopel | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | uniop 5520 | . . 3 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} | 
| 4 | 1, 2 | opi2 5474 | . . 3 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 | 
| 5 | 3, 4 | eqeltri 2837 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 ∈ 〈𝐴, 𝐵〉 | 
| 6 | elssuni 4937 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 〈𝐴, 𝐵〉 ⊆ ∪ 𝐶) | |
| 7 | 6 | sseld 3982 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (∪ 〈𝐴, 𝐵〉 ∈ 〈𝐴, 𝐵〉 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶)) | 
| 8 | 5, 7 | mpi 20 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3480 {cpr 4628 〈cop 4632 ∪ cuni 4907 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 | 
| This theorem is referenced by: dmrnssfld 5984 unielrel 6294 | 
| Copyright terms: Public domain | W3C validator |