![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniopel | Structured version Visualization version GIF version |
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | ⊢ 𝐴 ∈ V |
opthw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniopel | ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∪ ⟨𝐴, 𝐵⟩ ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | uniop 5515 | . . 3 ⊢ ∪ ⟨𝐴, 𝐵⟩ = {𝐴, 𝐵} |
4 | 1, 2 | opi2 5469 | . . 3 ⊢ {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵⟩ |
5 | 3, 4 | eqeltri 2828 | . 2 ⊢ ∪ ⟨𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵⟩ |
6 | elssuni 4941 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ⟨𝐴, 𝐵⟩ ⊆ ∪ 𝐶) | |
7 | 6 | sseld 3981 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (∪ ⟨𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵⟩ → ∪ ⟨𝐴, 𝐵⟩ ∈ ∪ 𝐶)) |
8 | 5, 7 | mpi 20 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ∪ ⟨𝐴, 𝐵⟩ ∈ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3473 {cpr 4630 ⟨cop 4634 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 |
This theorem is referenced by: dmrnssfld 5969 unielrel 6273 |
Copyright terms: Public domain | W3C validator |