| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeluu | Structured version Visualization version GIF version | ||
| Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| opeluu.1 | ⊢ 𝐴 ∈ V |
| opeluu.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opeluu | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeluu.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 4743 | . . 3 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | opeluu.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 4 | 1, 3 | opi2 5449 | . . . 4 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| 5 | elunii 4893 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → {𝐴, 𝐵} ∈ ∪ 𝐶) | |
| 6 | 4, 5 | mpan 690 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → {𝐴, 𝐵} ∈ ∪ 𝐶) |
| 7 | elunii 4893 | . . 3 ⊢ ((𝐴 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ ∪ 𝐶) → 𝐴 ∈ ∪ ∪ 𝐶) | |
| 8 | 2, 6, 7 | sylancr 587 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ ∪ ∪ 𝐶) |
| 9 | 3 | prid2 4744 | . . 3 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| 10 | elunii 4893 | . . 3 ⊢ ((𝐵 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ ∪ 𝐶) → 𝐵 ∈ ∪ ∪ 𝐶) | |
| 11 | 9, 6, 10 | sylancr 587 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ∪ ∪ 𝐶) |
| 12 | 8, 11 | jca 511 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 {cpr 4608 〈cop 4612 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 |
| This theorem is referenced by: asymref 6110 asymref2 6111 wrdexb 14548 |
| Copyright terms: Public domain | W3C validator |