MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeluu Structured version   Visualization version   GIF version

Theorem opeluu 5450
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
opeluu.1 𝐴 ∈ V
opeluu.2 𝐵 ∈ V
Assertion
Ref Expression
opeluu (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))

Proof of Theorem opeluu
StepHypRef Expression
1 opeluu.1 . . . 4 𝐴 ∈ V
21prid1 4743 . . 3 𝐴 ∈ {𝐴, 𝐵}
3 opeluu.2 . . . . 5 𝐵 ∈ V
41, 3opi2 5449 . . . 4 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
5 elunii 4893 . . . 4 (({𝐴, 𝐵} ∈ ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → {𝐴, 𝐵} ∈ 𝐶)
64, 5mpan 690 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → {𝐴, 𝐵} ∈ 𝐶)
7 elunii 4893 . . 3 ((𝐴 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ 𝐶) → 𝐴 𝐶)
82, 6, 7sylancr 587 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴 𝐶)
93prid2 4744 . . 3 𝐵 ∈ {𝐴, 𝐵}
10 elunii 4893 . . 3 ((𝐵 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ 𝐶) → 𝐵 𝐶)
119, 6, 10sylancr 587 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐵 𝐶)
128, 11jca 511 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴 𝐶𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3464  {cpr 4608  cop 4612   cuni 4888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889
This theorem is referenced by:  asymref  6110  asymref2  6111  wrdexb  14548
  Copyright terms: Public domain W3C validator