Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeluu | Structured version Visualization version GIF version |
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
opeluu.1 | ⊢ 𝐴 ∈ V |
opeluu.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeluu | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeluu.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4695 | . . 3 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | opeluu.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 1, 3 | opi2 5378 | . . . 4 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
5 | elunii 4841 | . . . 4 ⊢ (({𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → {𝐴, 𝐵} ∈ ∪ 𝐶) | |
6 | 4, 5 | mpan 686 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → {𝐴, 𝐵} ∈ ∪ 𝐶) |
7 | elunii 4841 | . . 3 ⊢ ((𝐴 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ ∪ 𝐶) → 𝐴 ∈ ∪ ∪ 𝐶) | |
8 | 2, 6, 7 | sylancr 586 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ ∪ ∪ 𝐶) |
9 | 3 | prid2 4696 | . . 3 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
10 | elunii 4841 | . . 3 ⊢ ((𝐵 ∈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ∈ ∪ 𝐶) → 𝐵 ∈ ∪ ∪ 𝐶) | |
11 | 9, 6, 10 | sylancr 586 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ∪ ∪ 𝐶) |
12 | 8, 11 | jca 511 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (𝐴 ∈ ∪ ∪ 𝐶 ∧ 𝐵 ∈ ∪ ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 {cpr 4560 〈cop 4564 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 |
This theorem is referenced by: asymref 6010 asymref2 6011 wrdexb 14156 |
Copyright terms: Public domain | W3C validator |