MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elvvuni Structured version   Visualization version   GIF version

Theorem elvvuni 5688
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
elvvuni (𝐴 ∈ (V × V) → 𝐴𝐴)

Proof of Theorem elvvuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 5686 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 3440 . . . . . 6 𝑥 ∈ V
3 vex 3440 . . . . . 6 𝑦 ∈ V
42, 3uniop 5450 . . . . 5 𝑥, 𝑦⟩ = {𝑥, 𝑦}
52, 3opi2 5404 . . . . 5 {𝑥, 𝑦} ∈ ⟨𝑥, 𝑦
64, 5eqeltri 2827 . . . 4 𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦
7 unieq 4865 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
8 id 22 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = ⟨𝑥, 𝑦⟩)
97, 8eleq12d 2825 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → ( 𝐴𝐴𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩))
106, 9mpbiri 258 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
1110exlimivv 1933 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴𝐴)
121, 11sylbi 217 1 (𝐴 ∈ (V × V) → 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  {cpr 4573  cop 4577   cuni 4854   × cxp 5609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-opab 5149  df-xp 5617
This theorem is referenced by:  unielxp  7954
  Copyright terms: Public domain W3C validator