![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvvuni | Structured version Visualization version GIF version |
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
elvvuni | ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5763 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | vex 3482 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3482 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | uniop 5525 | . . . . 5 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
5 | 2, 3 | opi2 5480 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ 〈𝑥, 𝑦〉 |
6 | 4, 5 | eqeltri 2835 | . . . 4 ⊢ ∪ 〈𝑥, 𝑦〉 ∈ 〈𝑥, 𝑦〉 |
7 | unieq 4923 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 = ∪ 〈𝑥, 𝑦〉) | |
8 | id 22 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 = 〈𝑥, 𝑦〉) | |
9 | 7, 8 | eleq12d 2833 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (∪ 𝐴 ∈ 𝐴 ↔ ∪ 〈𝑥, 𝑦〉 ∈ 〈𝑥, 𝑦〉)) |
10 | 6, 9 | mpbiri 258 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 ∈ 𝐴) |
11 | 10 | exlimivv 1930 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 ∈ 𝐴) |
12 | 1, 11 | sylbi 217 | 1 ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 {cpr 4633 〈cop 4637 ∪ cuni 4912 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-opab 5211 df-xp 5695 |
This theorem is referenced by: unielxp 8051 |
Copyright terms: Public domain | W3C validator |