![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elvvuni | Structured version Visualization version GIF version |
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.) |
Ref | Expression |
---|---|
elvvuni | ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elvv 5748 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3478 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | uniop 5514 | . . . . 5 ⊢ ∪ ⟨𝑥, 𝑦⟩ = {𝑥, 𝑦} |
5 | 2, 3 | opi2 5468 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ ⟨𝑥, 𝑦⟩ |
6 | 4, 5 | eqeltri 2829 | . . . 4 ⊢ ∪ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩ |
7 | unieq 4918 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∪ 𝐴 = ∪ ⟨𝑥, 𝑦⟩) | |
8 | id 22 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = ⟨𝑥, 𝑦⟩) | |
9 | 7, 8 | eleq12d 2827 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (∪ 𝐴 ∈ 𝐴 ↔ ∪ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑥, 𝑦⟩)) |
10 | 6, 9 | mpbiri 257 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∪ 𝐴 ∈ 𝐴) |
11 | 10 | exlimivv 1935 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → ∪ 𝐴 ∈ 𝐴) |
12 | 1, 11 | sylbi 216 | 1 ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 {cpr 4629 ⟨cop 4633 ∪ cuni 4907 × cxp 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-opab 5210 df-xp 5681 |
This theorem is referenced by: unielxp 8009 |
Copyright terms: Public domain | W3C validator |