| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elvvuni | Structured version Visualization version GIF version | ||
| Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.) |
| Ref | Expression |
|---|---|
| elvvuni | ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 5686 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | uniop 5450 | . . . . 5 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
| 5 | 2, 3 | opi2 5404 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ 〈𝑥, 𝑦〉 |
| 6 | 4, 5 | eqeltri 2827 | . . . 4 ⊢ ∪ 〈𝑥, 𝑦〉 ∈ 〈𝑥, 𝑦〉 |
| 7 | unieq 4865 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 = ∪ 〈𝑥, 𝑦〉) | |
| 8 | id 22 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐴 = 〈𝑥, 𝑦〉) | |
| 9 | 7, 8 | eleq12d 2825 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (∪ 𝐴 ∈ 𝐴 ↔ ∪ 〈𝑥, 𝑦〉 ∈ 〈𝑥, 𝑦〉)) |
| 10 | 6, 9 | mpbiri 258 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 ∈ 𝐴) |
| 11 | 10 | exlimivv 1933 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 ∈ 𝐴) |
| 12 | 1, 11 | sylbi 217 | 1 ⊢ (𝐴 ∈ (V × V) → ∪ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 {cpr 4573 〈cop 4577 ∪ cuni 4854 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: unielxp 7954 |
| Copyright terms: Public domain | W3C validator |