| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > optoclOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of optocl 5710 as of 29-Dec-2025. (Contributed by NM, 5-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| optocl.1 | ⊢ 𝐷 = (𝐵 × 𝐶) |
| optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
| optocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
| Ref | Expression |
|---|---|
| optoclOLD | ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp3 5682 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶))) | |
| 2 | opelxp 5652 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 3 | optocl.3 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
| 4 | 2, 3 | sylbi 217 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜑) |
| 5 | optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | imbitrid 244 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜓)) |
| 7 | 6 | imp 406 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) |
| 8 | 7 | exlimivv 1933 | . . 3 ⊢ (∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) |
| 9 | 1, 8 | sylbi 217 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝜓) |
| 10 | optocl.1 | . 2 ⊢ 𝐷 = (𝐵 × 𝐶) | |
| 11 | 9, 10 | eleq2s 2849 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4582 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |