MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2optocl Structured version   Visualization version   GIF version

Theorem 2optocl 5672
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
Hypotheses
Ref Expression
2optocl.1 𝑅 = (𝐶 × 𝐷)
2optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
2optocl.3 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
2optocl.4 (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)
Assertion
Ref Expression
2optocl ((𝐴𝑅𝐵𝑅) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑧,𝐵,𝑤   𝑥,𝐶,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝜓,𝑥,𝑦   𝜒,𝑧,𝑤   𝑧,𝑅,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑧,𝑤)   𝜒(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem 2optocl
StepHypRef Expression
1 2optocl.1 . . 3 𝑅 = (𝐶 × 𝐷)
2 2optocl.3 . . . 4 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓𝜒))
32imbi2d 340 . . 3 (⟨𝑧, 𝑤⟩ = 𝐵 → ((𝐴𝑅𝜓) ↔ (𝐴𝑅𝜒)))
4 2optocl.2 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
54imbi2d 340 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝐴 → (((𝑧𝐶𝑤𝐷) → 𝜑) ↔ ((𝑧𝐶𝑤𝐷) → 𝜓)))
6 2optocl.4 . . . . . 6 (((𝑥𝐶𝑦𝐷) ∧ (𝑧𝐶𝑤𝐷)) → 𝜑)
76ex 412 . . . . 5 ((𝑥𝐶𝑦𝐷) → ((𝑧𝐶𝑤𝐷) → 𝜑))
81, 5, 7optocl 5671 . . . 4 (𝐴𝑅 → ((𝑧𝐶𝑤𝐷) → 𝜓))
98com12 32 . . 3 ((𝑧𝐶𝑤𝐷) → (𝐴𝑅𝜓))
101, 3, 9optocl 5671 . 2 (𝐵𝑅 → (𝐴𝑅𝜒))
1110impcom 407 1 ((𝐴𝑅𝐵𝑅) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cop 4564   × cxp 5578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586
This theorem is referenced by:  3optocl  5673  ecopovsym  8566  axaddf  10832  axmulf  10833
  Copyright terms: Public domain W3C validator