![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2optocl | Structured version Visualization version GIF version |
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
2optocl.1 | ⊢ 𝑅 = (𝐶 × 𝐷) |
2optocl.2 | ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑 ↔ 𝜓)) |
2optocl.3 | ⊢ (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓 ↔ 𝜒)) |
2optocl.4 | ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) |
Ref | Expression |
---|---|
2optocl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2optocl.1 | . . 3 ⊢ 𝑅 = (𝐶 × 𝐷) | |
2 | 2optocl.3 | . . . 4 ⊢ (⟨𝑧, 𝑤⟩ = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 340 | . . 3 ⊢ (⟨𝑧, 𝑤⟩ = 𝐵 → ((𝐴 ∈ 𝑅 → 𝜓) ↔ (𝐴 ∈ 𝑅 → 𝜒))) |
4 | 2optocl.2 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | imbi2d 340 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑) ↔ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓))) |
6 | 2optocl.4 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) | |
7 | 6 | ex 413 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑)) |
8 | 1, 5, 7 | optocl 5770 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓)) |
9 | 8 | com12 32 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → (𝐴 ∈ 𝑅 → 𝜓)) |
10 | 1, 3, 9 | optocl 5770 | . 2 ⊢ (𝐵 ∈ 𝑅 → (𝐴 ∈ 𝑅 → 𝜒)) |
11 | 10 | impcom 408 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4634 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 |
This theorem is referenced by: 3optocl 5772 ecopovsym 8812 axaddf 11139 axmulf 11140 |
Copyright terms: Public domain | W3C validator |