| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2optocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
| Ref | Expression |
|---|---|
| 2optocl.1 | ⊢ 𝑅 = (𝐶 × 𝐷) |
| 2optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 2optocl.3 | ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 2optocl.4 | ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) |
| Ref | Expression |
|---|---|
| 2optocl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2optocl.1 | . . 3 ⊢ 𝑅 = (𝐶 × 𝐷) | |
| 2 | 2optocl.3 | . . . 4 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | imbi2d 340 | . . 3 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → ((𝐴 ∈ 𝑅 → 𝜓) ↔ (𝐴 ∈ 𝑅 → 𝜒))) |
| 4 | 2optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | imbi2d 340 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑) ↔ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓))) |
| 6 | 2optocl.4 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) | |
| 7 | 6 | ex 412 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑)) |
| 8 | 1, 5, 7 | optocl 5710 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓)) |
| 9 | 8 | com12 32 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → (𝐴 ∈ 𝑅 → 𝜓)) |
| 10 | 1, 3, 9 | optocl 5710 | . 2 ⊢ (𝐵 ∈ 𝑅 → (𝐴 ∈ 𝑅 → 𝜒)) |
| 11 | 10 | impcom 407 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 × cxp 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5154 df-xp 5622 |
| This theorem is referenced by: 3optocl 5713 ecopovsym 8743 axaddf 11036 axmulf 11037 |
| Copyright terms: Public domain | W3C validator |