Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2optocl | Structured version Visualization version GIF version |
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
2optocl.1 | ⊢ 𝑅 = (𝐶 × 𝐷) |
2optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
2optocl.3 | ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) |
2optocl.4 | ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) |
Ref | Expression |
---|---|
2optocl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2optocl.1 | . . 3 ⊢ 𝑅 = (𝐶 × 𝐷) | |
2 | 2optocl.3 | . . . 4 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | imbi2d 341 | . . 3 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → ((𝐴 ∈ 𝑅 → 𝜓) ↔ (𝐴 ∈ 𝑅 → 𝜒))) |
4 | 2optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | imbi2d 341 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑) ↔ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓))) |
6 | 2optocl.4 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ (𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷)) → 𝜑) | |
7 | 6 | ex 413 | . . . . 5 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜑)) |
8 | 1, 5, 7 | optocl 5681 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → 𝜓)) |
9 | 8 | com12 32 | . . 3 ⊢ ((𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷) → (𝐴 ∈ 𝑅 → 𝜓)) |
10 | 1, 3, 9 | optocl 5681 | . 2 ⊢ (𝐵 ∈ 𝑅 → (𝐴 ∈ 𝑅 → 𝜒)) |
11 | 10 | impcom 408 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 |
This theorem is referenced by: 3optocl 5683 ecopovsym 8608 axaddf 10901 axmulf 10902 |
Copyright terms: Public domain | W3C validator |