| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > optocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) Shorten and reduce axiom usage. (Revised by TM, 29-Dec-2025.) |
| Ref | Expression |
|---|---|
| optocl.1 | ⊢ 𝐷 = (𝐵 × 𝐶) |
| optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
| optocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
| Ref | Expression |
|---|---|
| optocl | ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxpi 5641 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 2 | optocl.3 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
| 3 | optocl.2 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | eqcoms 2737 | . . . . . 6 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | imbitrid 244 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜓)) |
| 6 | 5 | imp 406 | . . . 4 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) → 𝜓) |
| 7 | 6 | exlimivv 1932 | . . 3 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) → 𝜓) |
| 8 | 1, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝜓) |
| 9 | optocl.1 | . 2 ⊢ 𝐷 = (𝐵 × 𝐶) | |
| 10 | 8, 9 | eleq2s 2846 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4583 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5155 df-xp 5625 |
| This theorem is referenced by: 2optocl 5715 3optocl 5716 ecoptocl 8734 ax1rid 11055 axcnre 11058 |
| Copyright terms: Public domain | W3C validator |