|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > optocl | Structured version Visualization version GIF version | ||
| Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| optocl.1 | ⊢ 𝐷 = (𝐵 × 𝐶) | 
| optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| optocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | 
| Ref | Expression | 
|---|---|
| optocl | ⊢ (𝐴 ∈ 𝐷 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxp3 5750 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶))) | |
| 2 | opelxp 5720 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 3 | optocl.3 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
| 4 | 2, 3 | sylbi 217 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜑) | 
| 5 | optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | imbitrid 244 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜓)) | 
| 7 | 6 | imp 406 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) | 
| 8 | 7 | exlimivv 1931 | . . 3 ⊢ (∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) | 
| 9 | 1, 8 | sylbi 217 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝜓) | 
| 10 | optocl.1 | . 2 ⊢ 𝐷 = (𝐵 × 𝐶) | |
| 11 | 9, 10 | eleq2s 2858 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 〈cop 4631 × cxp 5682 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-opab 5205 df-xp 5690 | 
| This theorem is referenced by: 2optocl 5780 3optocl 5781 ecoptocl 8848 ax1rid 11202 axcnre 11205 | 
| Copyright terms: Public domain | W3C validator |