![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > optocl | Structured version Visualization version GIF version |
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) |
Ref | Expression |
---|---|
optocl.1 | ⊢ 𝐷 = (𝐵 × 𝐶) |
optocl.2 | ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑 ↔ 𝜓)) |
optocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
Ref | Expression |
---|---|
optocl | ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp3 5742 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶))) | |
2 | opelxp 5712 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
3 | optocl.3 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
4 | 2, 3 | sylbi 216 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜑) |
5 | optocl.2 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | imbitrid 243 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜓)) |
7 | 6 | imp 407 | . . . 4 ⊢ ((⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓) |
8 | 7 | exlimivv 1935 | . . 3 ⊢ (∃𝑥∃𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓) |
9 | 1, 8 | sylbi 216 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝜓) |
10 | optocl.1 | . 2 ⊢ 𝐷 = (𝐵 × 𝐶) | |
11 | 9, 10 | eleq2s 2851 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ⟨cop 4634 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 |
This theorem is referenced by: 2optocl 5771 3optocl 5772 ecoptocl 8800 ax1rid 11155 axcnre 11158 |
Copyright terms: Public domain | W3C validator |