MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  optocl Structured version   Visualization version   GIF version

Theorem optocl 5713
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) Shorten and reduce axiom usage. (Revised by TM, 29-Dec-2025.)
Hypotheses
Ref Expression
optocl.1 𝐷 = (𝐵 × 𝐶)
optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
optocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
optocl (𝐴𝐷𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem optocl
StepHypRef Expression
1 elxpi 5641 . . 3 (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
2 optocl.3 . . . . . 6 ((𝑥𝐵𝑦𝐶) → 𝜑)
3 optocl.2 . . . . . . 7 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
43eqcoms 2737 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
52, 4imbitrid 244 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → ((𝑥𝐵𝑦𝐶) → 𝜓))
65imp 406 . . . 4 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) → 𝜓)
76exlimivv 1932 . . 3 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) → 𝜓)
81, 7syl 17 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝜓)
9 optocl.1 . 2 𝐷 = (𝐵 × 𝐶)
108, 9eleq2s 2846 1 (𝐴𝐷𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4583   × cxp 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-opab 5155  df-xp 5625
This theorem is referenced by:  2optocl  5715  3optocl  5716  ecoptocl  8734  ax1rid  11055  axcnre  11058
  Copyright terms: Public domain W3C validator