MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  optocl Structured version   Visualization version   GIF version

Theorem optocl 5681
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
Hypotheses
Ref Expression
optocl.1 𝐷 = (𝐵 × 𝐶)
optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
optocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
optocl (𝐴𝐷𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem optocl
StepHypRef Expression
1 elxp3 5653 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)))
2 opelxp 5625 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) ↔ (𝑥𝐵𝑦𝐶))
3 optocl.3 . . . . . . 7 ((𝑥𝐵𝑦𝐶) → 𝜑)
42, 3sylbi 216 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜑)
5 optocl.2 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
64, 5syl5ib 243 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜓))
76imp 407 . . . 4 ((⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓)
87exlimivv 1935 . . 3 (∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓)
91, 8sylbi 216 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝜓)
10 optocl.1 . 2 𝐷 = (𝐵 × 𝐶)
119, 10eleq2s 2857 1 (𝐴𝐷𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  cop 4567   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-xp 5595
This theorem is referenced by:  2optocl  5682  3optocl  5683  ecoptocl  8596  ax1rid  10917  axcnre  10920
  Copyright terms: Public domain W3C validator