MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  optocl Structured version   Visualization version   GIF version

Theorem optocl 5736
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
Hypotheses
Ref Expression
optocl.1 𝐷 = (𝐵 × 𝐶)
optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
optocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
optocl (𝐴𝐷𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem optocl
StepHypRef Expression
1 elxp3 5707 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)))
2 opelxp 5677 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) ↔ (𝑥𝐵𝑦𝐶))
3 optocl.3 . . . . . . 7 ((𝑥𝐵𝑦𝐶) → 𝜑)
42, 3sylbi 217 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜑)
5 optocl.2 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
64, 5imbitrid 244 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜓))
76imp 406 . . . 4 ((⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓)
87exlimivv 1932 . . 3 (∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓)
91, 8sylbi 217 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝜓)
10 optocl.1 . 2 𝐷 = (𝐵 × 𝐶)
119, 10eleq2s 2847 1 (𝐴𝐷𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4598   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647
This theorem is referenced by:  2optocl  5737  3optocl  5738  ecoptocl  8783  ax1rid  11121  axcnre  11124
  Copyright terms: Public domain W3C validator