Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc2 | Structured version Visualization version GIF version |
Description: Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbc2 | ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotasbc 42037 | . 2 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒))) | |
2 | iotasbc 42037 | . . . . 5 ⊢ (∃!𝑥𝜓 → ([(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
3 | 2 | anbi2d 629 | . . . 4 ⊢ (∃!𝑥𝜓 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)))) |
4 | 3anass 1094 | . . . . . 6 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
5 | 4 | exbii 1850 | . . . . 5 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
6 | 19.42v 1957 | . . . . 5 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
7 | 5, 6 | bitr2i 275 | . . . 4 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) |
8 | 3, 7 | bitrdi 287 | . . 3 ⊢ (∃!𝑥𝜓 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
9 | 8 | exbidv 1924 | . 2 ⊢ (∃!𝑥𝜓 → (∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
10 | 1, 9 | sylan9bb 510 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 ∃wex 1782 ∃!weu 2568 [wsbc 3716 ℩cio 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |