| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc2 | Structured version Visualization version GIF version | ||
| Description: Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotasbc2 | ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotasbc 44438 | . 2 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒))) | |
| 2 | iotasbc 44438 | . . . . 5 ⊢ (∃!𝑥𝜓 → ([(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
| 3 | 2 | anbi2d 630 | . . . 4 ⊢ (∃!𝑥𝜓 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)))) |
| 4 | 3anass 1095 | . . . . . 6 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
| 5 | 4 | exbii 1848 | . . . . 5 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
| 6 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
| 7 | 5, 6 | bitr2i 276 | . . . 4 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) |
| 8 | 3, 7 | bitrdi 287 | . . 3 ⊢ (∃!𝑥𝜓 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
| 9 | 8 | exbidv 1921 | . 2 ⊢ (∃!𝑥𝜓 → (∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
| 10 | 1, 9 | sylan9bb 509 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 ∃wex 1779 ∃!weu 2568 [wsbc 3788 ℩cio 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-sbc 3789 df-un 3956 df-ss 3968 df-sn 4627 df-pr 4629 df-uni 4908 df-iota 6514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |