Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc2 | Structured version Visualization version GIF version |
Description: Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbc2 | ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotasbc 41518 | . 2 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒))) | |
2 | iotasbc 41518 | . . . . 5 ⊢ (∃!𝑥𝜓 → ([(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
3 | 2 | anbi2d 631 | . . . 4 ⊢ (∃!𝑥𝜓 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)))) |
4 | 3anass 1092 | . . . . . 6 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
5 | 4 | exbii 1849 | . . . . 5 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
6 | 19.42v 1954 | . . . . 5 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
7 | 5, 6 | bitr2i 279 | . . . 4 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) |
8 | 3, 7 | bitrdi 290 | . . 3 ⊢ (∃!𝑥𝜓 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
9 | 8 | exbidv 1922 | . 2 ⊢ (∃!𝑥𝜓 → (∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
10 | 1, 9 | sylan9bb 513 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 ∀wal 1536 ∃wex 1781 ∃!weu 2587 [wsbc 3696 ℩cio 6292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-sbc 3697 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-uni 4799 df-iota 6294 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |