![]() |
Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iotasbc2 | Structured version Visualization version GIF version |
Description: Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotasbc2 | ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotasbc 42791 | . 2 ⊢ (∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒))) | |
2 | iotasbc 42791 | . . . . 5 ⊢ (∃!𝑥𝜓 → ([(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
3 | 2 | anbi2d 630 | . . . 4 ⊢ (∃!𝑥𝜓 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)))) |
4 | 3anass 1096 | . . . . . 6 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
5 | 4 | exbii 1851 | . . . . 5 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
6 | 19.42v 1958 | . . . . 5 ⊢ (∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ (∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) ↔ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) | |
7 | 5, 6 | bitr2i 276 | . . . 4 ⊢ ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∃𝑧(∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒)) |
8 | 3, 7 | bitrdi 287 | . . 3 ⊢ (∃!𝑥𝜓 → ((∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
9 | 8 | exbidv 1925 | . 2 ⊢ (∃!𝑥𝜓 → (∃𝑦(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ [(℩𝑥𝜓) / 𝑧]𝜒) ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
10 | 1, 9 | sylan9bb 511 | 1 ⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦∃𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ∧ ∀𝑥(𝜓 ↔ 𝑥 = 𝑧) ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∀wal 1540 ∃wex 1782 ∃!weu 2563 [wsbc 3743 ℩cio 6450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3449 df-sbc 3744 df-un 3919 df-in 3921 df-ss 3931 df-sn 4591 df-pr 4593 df-uni 4870 df-iota 6452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |