MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2cshwcshw Structured version   Visualization version   GIF version

Theorem 2cshwcshw 14864
Description: If a word is a cyclically shifted word, and a second word is the result of cyclically shifting the same word, then the second word is the result of cyclically shifting the first word. (Contributed by AV, 11-May-2018.) (Revised by AV, 12-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.)
Assertion
Ref Expression
2cshwcshw ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
Distinct variable groups:   𝑚,𝑛,𝐾   𝑚,𝑁,𝑛   𝑚,𝑉,𝑛   𝑚,𝑋,𝑛   𝑚,𝑌,𝑛   𝑚,𝑍,𝑛

Proof of Theorem 2cshwcshw
StepHypRef Expression
1 difelfznle 13682 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ (0...𝑁) ∧ 𝑚 ∈ (0...𝑁) ∧ ¬ 𝐾𝑚) → ((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁))
213exp 1120 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (0...𝑁) → (𝑚 ∈ (0...𝑁) → (¬ 𝐾𝑚 → ((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁))))
32ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑚 ∈ (0...𝑁) → (¬ 𝐾𝑚 → ((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁))))
43imp 406 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) → (¬ 𝐾𝑚 → ((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁)))
54adantr 480 . . . . . . . . . . . . . 14 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → (¬ 𝐾𝑚 → ((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁)))
65com12 32 . . . . . . . . . . . . 13 𝐾𝑚 → (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → ((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁)))
76adantl 481 . . . . . . . . . . . 12 ((¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚) → (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → ((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁)))
87imp 406 . . . . . . . . . . 11 (((¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚) ∧ ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚))) → ((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁))
9 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → 𝑌 ∈ Word 𝑉)
109ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → 𝑌 ∈ Word 𝑉)
11 elfzelz 13564 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
1211adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → 𝐾 ∈ ℤ)
1312ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → 𝐾 ∈ ℤ)
14 elfz2 13554 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (0 ≤ 𝐾𝐾𝑁)))
15 zaddcl 12657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 + 𝑁) ∈ ℤ)
1615adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝑚 + 𝑁) ∈ ℤ)
17 simprr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℤ)
1816, 17zsubcld 12727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑚 + 𝑁) − 𝐾) ∈ ℤ)
1918ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 + 𝑁) − 𝐾) ∈ ℤ))
20 elfzelz 13564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
2119, 20syl11 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ (0...𝑁) → ((𝑚 + 𝑁) − 𝐾) ∈ ℤ))
22213adant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ (0...𝑁) → ((𝑚 + 𝑁) − 𝐾) ∈ ℤ))
2322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (0 ≤ 𝐾𝐾𝑁)) → (𝑚 ∈ (0...𝑁) → ((𝑚 + 𝑁) − 𝐾) ∈ ℤ))
2414, 23sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (0...𝑁) → (𝑚 ∈ (0...𝑁) → ((𝑚 + 𝑁) − 𝐾) ∈ ℤ))
2524ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) → (𝑚 ∈ (0...𝑁) → ((𝑚 + 𝑁) − 𝐾) ∈ ℤ))
2625imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚 + 𝑁) − 𝐾) ∈ ℤ)
27 2cshw 14851 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 ∈ Word 𝑉𝐾 ∈ ℤ ∧ ((𝑚 + 𝑁) − 𝐾) ∈ ℤ) → ((𝑌 cyclShift 𝐾) cyclShift ((𝑚 + 𝑁) − 𝐾)) = (𝑌 cyclShift (𝐾 + ((𝑚 + 𝑁) − 𝐾))))
2810, 13, 26, 27syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑌 cyclShift 𝐾) cyclShift ((𝑚 + 𝑁) − 𝐾)) = (𝑌 cyclShift (𝐾 + ((𝑚 + 𝑁) − 𝐾))))
2917, 18zaddcld 12726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ)
3029ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ℤ → ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ))
3130, 20syl11 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ (0...𝑁) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ))
32313adant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ (0...𝑁) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ))
3332adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (0 ≤ 𝐾𝐾𝑁)) → (𝑚 ∈ (0...𝑁) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ))
3414, 33sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (0...𝑁) → (𝑚 ∈ (0...𝑁) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ))
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) → (𝑚 ∈ (0...𝑁) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ))
3635imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ)
37 cshwsublen 14834 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 ∈ Word 𝑉 ∧ (𝐾 + ((𝑚 + 𝑁) − 𝐾)) ∈ ℤ) → (𝑌 cyclShift (𝐾 + ((𝑚 + 𝑁) − 𝐾))) = (𝑌 cyclShift ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌))))
3810, 36, 37syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → (𝑌 cyclShift (𝐾 + ((𝑚 + 𝑁) − 𝐾))) = (𝑌 cyclShift ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌))))
3928, 38eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑌 cyclShift 𝐾) cyclShift ((𝑚 + 𝑁) − 𝐾)) = (𝑌 cyclShift ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌))))
40 elfz2nn0 13658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
41 nn0cn 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
42 nn0cn 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
43 nn0cn 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
4442, 43anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ))
45 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑚 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → 𝐾 ∈ ℂ)
46 addcl 11237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑚 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑚 + 𝑁) ∈ ℂ)
4746adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑚 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (𝑚 + 𝑁) ∈ ℂ)
4845, 47pncan3d 11623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑚 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → (𝐾 + ((𝑚 + 𝑁) − 𝐾)) = (𝑚 + 𝑁))
4948oveq1d 7446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = ((𝑚 + 𝑁) − 𝑁))
50 pncan 11514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑚 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑚 + 𝑁) − 𝑁) = 𝑚)
5150adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → ((𝑚 + 𝑁) − 𝑁) = 𝑚)
5249, 51eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚)
5341, 44, 52syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 ∈ ℕ0 ∧ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚)
5453ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ℕ0 → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚))
55 elfznn0 13660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℕ0)
5654, 55syl11 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚))
57563adant3 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) → (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚))
5840, 57sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ (0...𝑁) → (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚))
5958adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚))
60 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑌) = 𝑁 → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌)) = ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁))
6160eqeq1d 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑌) = 𝑁 → (((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌)) = 𝑚 ↔ ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚))
6261imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑌) = 𝑁 → ((𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌)) = 𝑚) ↔ (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚)))
6362adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → ((𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌)) = 𝑚) ↔ (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚)))
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → ((𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌)) = 𝑚) ↔ (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − 𝑁) = 𝑚)))
6559, 64mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌)) = 𝑚))
6665adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) → (𝑚 ∈ (0...𝑁) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌)) = 𝑚))
6766imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌)) = 𝑚)
6867oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → (𝑌 cyclShift ((𝐾 + ((𝑚 + 𝑁) − 𝐾)) − (♯‘𝑌))) = (𝑌 cyclShift 𝑚))
6939, 68eqtr2d 2778 . . . . . . . . . . . . . . . . . . . 20 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) → (𝑌 cyclShift 𝑚) = ((𝑌 cyclShift 𝐾) cyclShift ((𝑚 + 𝑁) − 𝐾)))
7069adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑌 cyclShift 𝑚) = ((𝑌 cyclShift 𝐾) cyclShift ((𝑚 + 𝑁) − 𝐾)))
71 oveq1 7438 . . . . . . . . . . . . . . . . . . . 20 (𝑋 = (𝑌 cyclShift 𝐾) → (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾)) = ((𝑌 cyclShift 𝐾) cyclShift ((𝑚 + 𝑁) − 𝐾)))
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾)) = ((𝑌 cyclShift 𝐾) cyclShift ((𝑚 + 𝑁) − 𝐾)))
7370, 72eqtr4d 2780 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑌 cyclShift 𝑚) = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾)))
7473exp41 434 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → ((¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚) → (𝑚 ∈ (0...𝑁) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑌 cyclShift 𝑚) = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾))))))
7574com24 95 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑚 ∈ (0...𝑁) → ((¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚) → (𝑌 cyclShift 𝑚) = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾))))))
7675imp41 425 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) → (𝑌 cyclShift 𝑚) = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾)))
7776eqeq2d 2748 . . . . . . . . . . . . . 14 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) → (𝑍 = (𝑌 cyclShift 𝑚) ↔ 𝑍 = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾))))
7877biimpd 229 . . . . . . . . . . . . 13 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ (¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚)) → (𝑍 = (𝑌 cyclShift 𝑚) → 𝑍 = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾))))
7978impancom 451 . . . . . . . . . . . 12 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → ((¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚) → 𝑍 = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾))))
8079impcom 407 . . . . . . . . . . 11 (((¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚) ∧ ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚))) → 𝑍 = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾)))
81 oveq2 7439 . . . . . . . . . . . 12 (𝑛 = ((𝑚 + 𝑁) − 𝐾) → (𝑋 cyclShift 𝑛) = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾)))
8281rspceeqv 3645 . . . . . . . . . . 11 ((((𝑚 + 𝑁) − 𝐾) ∈ (0...𝑁) ∧ 𝑍 = (𝑋 cyclShift ((𝑚 + 𝑁) − 𝐾))) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))
838, 80, 82syl2anc 584 . . . . . . . . . 10 (((¬ 𝑚 = 0 ∧ ¬ 𝐾𝑚) ∧ ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚))) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))
8483exp31 419 . . . . . . . . 9 𝑚 = 0 → (¬ 𝐾𝑚 → (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))))
85 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑚 = 0 → (𝑌 cyclShift 𝑚) = (𝑌 cyclShift 0))
8685eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑚 = 0 → (𝑍 = (𝑌 cyclShift 𝑚) ↔ 𝑍 = (𝑌 cyclShift 0)))
87 cshw0 14832 . . . . . . . . . . . . . . . . . . . . 21 (𝑌 ∈ Word 𝑉 → (𝑌 cyclShift 0) = 𝑌)
8887adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → (𝑌 cyclShift 0) = 𝑌)
8988eqeq2d 2748 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → (𝑍 = (𝑌 cyclShift 0) ↔ 𝑍 = 𝑌))
90 fznn0sub2 13675 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
9190adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ (0...𝑁))
92 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑌) = 𝑁 → ((♯‘𝑌) − 𝐾) = (𝑁𝐾))
9392eleq1d 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑌) = 𝑁 → (((♯‘𝑌) − 𝐾) ∈ (0...𝑁) ↔ (𝑁𝐾) ∈ (0...𝑁)))
9493ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) → (((♯‘𝑌) − 𝐾) ∈ (0...𝑁) ↔ (𝑁𝐾) ∈ (0...𝑁)))
9591, 94mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑌) − 𝐾) ∈ (0...𝑁))
9695adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → ((♯‘𝑌) − 𝐾) ∈ (0...𝑁))
97 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑋 = (𝑌 cyclShift 𝐾) → (𝑋 cyclShift ((♯‘𝑌) − 𝐾)) = ((𝑌 cyclShift 𝐾) cyclShift ((♯‘𝑌) − 𝐾)))
98 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → 𝑌 ∈ Word 𝑉)
99 2cshwid 14852 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑌 ∈ Word 𝑉𝐾 ∈ ℤ) → ((𝑌 cyclShift 𝐾) cyclShift ((♯‘𝑌) − 𝐾)) = 𝑌)
10098, 11, 99syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑌 cyclShift 𝐾) cyclShift ((♯‘𝑌) − 𝐾)) = 𝑌)
10197, 100sylan9eqr 2799 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑋 cyclShift ((♯‘𝑌) − 𝐾)) = 𝑌)
102101eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → 𝑌 = (𝑋 cyclShift ((♯‘𝑌) − 𝐾)))
103 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = ((♯‘𝑌) − 𝐾) → (𝑋 cyclShift 𝑛) = (𝑋 cyclShift ((♯‘𝑌) − 𝐾)))
104103rspceeqv 3645 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((♯‘𝑌) − 𝐾) ∈ (0...𝑁) ∧ 𝑌 = (𝑋 cyclShift ((♯‘𝑌) − 𝐾))) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))
10596, 102, 104syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))
106105adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑍 = 𝑌) → ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛))
107 eqeq1 2741 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑍 = 𝑌 → (𝑍 = (𝑋 cyclShift 𝑛) ↔ 𝑌 = (𝑋 cyclShift 𝑛)))
108107rexbidv 3179 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑍 = 𝑌 → (∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
109108adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑍 = 𝑌) → (∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑌 = (𝑋 cyclShift 𝑛)))
110106, 109mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑍 = 𝑌) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))
111110exp41 434 . . . . . . . . . . . . . . . . . . . 20 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → (𝐾 ∈ (0...𝑁) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑍 = 𝑌 → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))))
112111com24 95 . . . . . . . . . . . . . . . . . . 19 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → (𝑍 = 𝑌 → (𝑋 = (𝑌 cyclShift 𝐾) → (𝐾 ∈ (0...𝑁) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))))
11389, 112sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → (𝑍 = (𝑌 cyclShift 0) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝐾 ∈ (0...𝑁) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))))
114113com24 95 . . . . . . . . . . . . . . . . 17 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → (𝐾 ∈ (0...𝑁) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑍 = (𝑌 cyclShift 0) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))))
115114impcom 407 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑍 = (𝑌 cyclShift 0) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))))
116115com13 88 . . . . . . . . . . . . . . 15 (𝑍 = (𝑌 cyclShift 0) → (𝑋 = (𝑌 cyclShift 𝐾) → ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))))
117116a1d 25 . . . . . . . . . . . . . 14 (𝑍 = (𝑌 cyclShift 0) → (𝑚 ∈ (0...𝑁) → (𝑋 = (𝑌 cyclShift 𝐾) → ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))))
11886, 117biimtrdi 253 . . . . . . . . . . . . 13 (𝑚 = 0 → (𝑍 = (𝑌 cyclShift 𝑚) → (𝑚 ∈ (0...𝑁) → (𝑋 = (𝑌 cyclShift 𝐾) → ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))))))
119118com24 95 . . . . . . . . . . . 12 (𝑚 = 0 → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑚 ∈ (0...𝑁) → (𝑍 = (𝑌 cyclShift 𝑚) → ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))))))
120119com15 101 . . . . . . . . . . 11 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑚 ∈ (0...𝑁) → (𝑍 = (𝑌 cyclShift 𝑚) → (𝑚 = 0 → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))))))
121120imp41 425 . . . . . . . . . 10 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → (𝑚 = 0 → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
122121com12 32 . . . . . . . . 9 (𝑚 = 0 → (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
123 difelfzle 13681 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ (0...𝑁) ∧ 𝑚 ∈ (0...𝑁) ∧ 𝐾𝑚) → (𝑚𝐾) ∈ (0...𝑁))
1241233exp 1120 . . . . . . . . . . . . . . 15 (𝐾 ∈ (0...𝑁) → (𝑚 ∈ (0...𝑁) → (𝐾𝑚 → (𝑚𝐾) ∈ (0...𝑁))))
125124ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑚 ∈ (0...𝑁) → (𝐾𝑚 → (𝑚𝐾) ∈ (0...𝑁))))
126125imp 406 . . . . . . . . . . . . 13 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) → (𝐾𝑚 → (𝑚𝐾) ∈ (0...𝑁)))
127126adantr 480 . . . . . . . . . . . 12 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → (𝐾𝑚 → (𝑚𝐾) ∈ (0...𝑁)))
128127impcom 407 . . . . . . . . . . 11 ((𝐾𝑚 ∧ ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚))) → (𝑚𝐾) ∈ (0...𝑁))
1299ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) → 𝑌 ∈ Word 𝑉)
13012ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) → 𝐾 ∈ ℤ)
131 zsubcl 12659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ ℤ)
132131ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ℤ → (𝐾 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
13320, 11, 132syl2imc 41 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (0...𝑁) → (𝑚 ∈ (0...𝑁) → (𝑚𝐾) ∈ ℤ))
134133ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) → (𝑚 ∈ (0...𝑁) → (𝑚𝐾) ∈ ℤ))
135134imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) → (𝑚𝐾) ∈ ℤ)
136 2cshw 14851 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑌 ∈ Word 𝑉𝐾 ∈ ℤ ∧ (𝑚𝐾) ∈ ℤ) → ((𝑌 cyclShift 𝐾) cyclShift (𝑚𝐾)) = (𝑌 cyclShift (𝐾 + (𝑚𝐾))))
137129, 130, 135, 136syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) → ((𝑌 cyclShift 𝐾) cyclShift (𝑚𝐾)) = (𝑌 cyclShift (𝐾 + (𝑚𝐾))))
138 zcn 12618 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
13920zcnd 12723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℂ)
140 pncan3 11516 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐾 + (𝑚𝐾)) = 𝑚)
141138, 139, 140syl2anr 597 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ (0...𝑁) ∧ 𝐾 ∈ ℤ) → (𝐾 + (𝑚𝐾)) = 𝑚)
142141ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ (0...𝑁) → (𝐾 ∈ ℤ → (𝐾 + (𝑚𝐾)) = 𝑚))
14311, 142syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐾 ∈ (0...𝑁) → (𝑚 ∈ (0...𝑁) → (𝐾 + (𝑚𝐾)) = 𝑚))
144143ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) → (𝑚 ∈ (0...𝑁) → (𝐾 + (𝑚𝐾)) = 𝑚))
145144imp 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) → (𝐾 + (𝑚𝐾)) = 𝑚)
146145oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) → (𝑌 cyclShift (𝐾 + (𝑚𝐾))) = (𝑌 cyclShift 𝑚))
147137, 146eqtr2d 2778 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) → (𝑌 cyclShift 𝑚) = ((𝑌 cyclShift 𝐾) cyclShift (𝑚𝐾)))
148147adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑌 cyclShift 𝑚) = ((𝑌 cyclShift 𝐾) cyclShift (𝑚𝐾)))
149 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋 = (𝑌 cyclShift 𝐾) → (𝑋 cyclShift (𝑚𝐾)) = ((𝑌 cyclShift 𝐾) cyclShift (𝑚𝐾)))
150149eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = (𝑌 cyclShift 𝐾) → ((𝑌 cyclShift 𝑚) = (𝑋 cyclShift (𝑚𝐾)) ↔ (𝑌 cyclShift 𝑚) = ((𝑌 cyclShift 𝐾) cyclShift (𝑚𝐾))))
151150adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → ((𝑌 cyclShift 𝑚) = (𝑋 cyclShift (𝑚𝐾)) ↔ (𝑌 cyclShift 𝑚) = ((𝑌 cyclShift 𝐾) cyclShift (𝑚𝐾))))
152148, 151mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑌 cyclShift 𝑚) = (𝑋 cyclShift (𝑚𝐾)))
153152eqeq2d 2748 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑍 = (𝑌 cyclShift 𝑚) ↔ 𝑍 = (𝑋 cyclShift (𝑚𝐾))))
154153biimpd 229 . . . . . . . . . . . . . . . . 17 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝐾𝑚) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (𝑍 = (𝑌 cyclShift 𝑚) → 𝑍 = (𝑋 cyclShift (𝑚𝐾))))
155154exp41 434 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (𝐾𝑚 → (𝑚 ∈ (0...𝑁) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑍 = (𝑌 cyclShift 𝑚) → 𝑍 = (𝑋 cyclShift (𝑚𝐾)))))))
156155com24 95 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (𝑋 = (𝑌 cyclShift 𝐾) → (𝑚 ∈ (0...𝑁) → (𝐾𝑚 → (𝑍 = (𝑌 cyclShift 𝑚) → 𝑍 = (𝑋 cyclShift (𝑚𝐾)))))))
157156imp31 417 . . . . . . . . . . . . . 14 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) → (𝐾𝑚 → (𝑍 = (𝑌 cyclShift 𝑚) → 𝑍 = (𝑋 cyclShift (𝑚𝐾)))))
158157com23 86 . . . . . . . . . . . . 13 ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) → (𝑍 = (𝑌 cyclShift 𝑚) → (𝐾𝑚𝑍 = (𝑋 cyclShift (𝑚𝐾)))))
159158imp 406 . . . . . . . . . . . 12 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → (𝐾𝑚𝑍 = (𝑋 cyclShift (𝑚𝐾))))
160159impcom 407 . . . . . . . . . . 11 ((𝐾𝑚 ∧ ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚))) → 𝑍 = (𝑋 cyclShift (𝑚𝐾)))
161 oveq2 7439 . . . . . . . . . . . 12 (𝑛 = (𝑚𝐾) → (𝑋 cyclShift 𝑛) = (𝑋 cyclShift (𝑚𝐾)))
162161rspceeqv 3645 . . . . . . . . . . 11 (((𝑚𝐾) ∈ (0...𝑁) ∧ 𝑍 = (𝑋 cyclShift (𝑚𝐾))) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))
163128, 160, 162syl2anc 584 . . . . . . . . . 10 ((𝐾𝑚 ∧ ((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚))) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))
164163ex 412 . . . . . . . . 9 (𝐾𝑚 → (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
16584, 122, 164pm2.61ii 183 . . . . . . . 8 (((((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))
166165rexlimdva2 3157 . . . . . . 7 (((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) ∧ 𝑋 = (𝑌 cyclShift 𝐾)) → (∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
167166ex 412 . . . . . 6 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (𝑋 = (𝑌 cyclShift 𝐾) → (∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))))
168167com23 86 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁)) → (∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚) → (𝑋 = (𝑌 cyclShift 𝐾) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))))
169168ex 412 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → (∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚) → (𝑋 = (𝑌 cyclShift 𝐾) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))))
170169com24 95 . . 3 (𝐾 ∈ (0...𝑁) → (𝑋 = (𝑌 cyclShift 𝐾) → (∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚) → ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))))
1711703imp 1111 . 2 ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
172171com12 32 1 ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155   + caddc 11158  cle 11296  cmin 11492  0cn0 12526  cz 12613  ...cfz 13547  chash 14369  Word cword 14552   cyclShift ccsh 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-csh 14827
This theorem is referenced by:  eleclclwwlknlem1  30079
  Copyright terms: Public domain W3C validator