MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreg Structured version   Visualization version   GIF version

Theorem frgrreg 30373
Description: If a finite nonempty friendship graph is 𝐾-regular, then 𝐾 must be 2 (or 0). (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreg ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))

Proof of Theorem frgrreg
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ↔ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
2 ancom 460 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) ↔ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31, 2anbi12i 628 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) ↔ ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
43biimpi 216 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
54ancomd 461 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)))
6 frgrreggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
76numclwwlk7lem 30368 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
85, 7syl 17 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 ∈ ℕ0)
9 neanior 3018 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ↔ ¬ (𝐾 = 0 ∨ 𝐾 = 2))
10 nn0re 12427 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
11 1re 11150 . . . . . . . . . . . . . 14 1 ∈ ℝ
12 lenlt 11228 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1310, 11, 12sylancl 586 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1413adantl 481 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
15 elnnne0 12432 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
16 nnle1eq1 12192 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 ≤ 1 ↔ 𝐾 = 1))
1716biimpd 229 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → (𝐾 ≤ 1 → 𝐾 = 1))
1815, 17sylbir 235 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≤ 1 → 𝐾 = 1))
1918a1d 25 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≠ 2 → (𝐾 ≤ 1 → 𝐾 = 1)))
2019expimpd 453 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ≤ 1 → 𝐾 = 1)))
2120impcom 407 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 → 𝐾 = 1))
2214, 21sylbird 260 . . . . . . . . . . 11 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾𝐾 = 1))
236fveq2i 6843 . . . . . . . . . . . . . . . . . 18 (♯‘𝑉) = (♯‘(Vtx‘𝐺))
2423eqeq1i 2734 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) = 1 ↔ (♯‘(Vtx‘𝐺)) = 1)
2524biimpi 216 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) = 1 → (♯‘(Vtx‘𝐺)) = 1)
26 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
2726adantl 481 . . . . . . . . . . . . . . . 16 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 RegUSGraph 𝐾)
28 rusgr1vtx 29569 . . . . . . . . . . . . . . . 16 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)
2925, 27, 28syl2an 596 . . . . . . . . . . . . . . 15 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → 𝐾 = 0)
3029orcd 873 . . . . . . . . . . . . . 14 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → (𝐾 = 0 ∨ 𝐾 = 2))
3130ex 412 . . . . . . . . . . . . 13 ((♯‘𝑉) = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
3231a1d 25 . . . . . . . . . . . 12 ((♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
33 eqid 2729 . . . . . . . . . . . . . . . . 17 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
346, 33rusgrprop0 29548 . . . . . . . . . . . . . . . 16 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
35 simp2 1137 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 𝐺 ∈ FriendGraph )
36 hashnncl 14307 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅))
37 df-ne 2926 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
38 nngt1ne1 12191 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → (1 < (♯‘𝑉) ↔ (♯‘𝑉) ≠ 1))
3938biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → 1 < (♯‘𝑉)))
4037, 39biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4136, 40biimtrrdi 254 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉))))
4241imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4342impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < (♯‘𝑉))
446vdgn1frgrv3 30276 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
4535, 43, 443imp3i2an 1346 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
46 r19.26 3091 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
47 r19.2z 4454 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → ∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
48 neeq1 2987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ↔ 𝐾 ≠ 1))
4948biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 → 𝐾 ≠ 1))
5049impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ≠ 1)
51 eqneqall 2936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐾 = 1 → (𝐾 ≠ 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5251com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ≠ 1 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5350, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5453rexlimivw 3130 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5547, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5655ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ≠ ∅ → (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5746, 56biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ≠ ∅ → ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5857expd 415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
5958com34 91 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6059adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
61603ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6245, 61mpd 15 . . . . . . . . . . . . . . . . . . 19 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))
63623exp 1119 . . . . . . . . . . . . . . . . . 18 (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6463com15 101 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
65643ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6634, 65syl 17 . . . . . . . . . . . . . . 15 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6766impcom 407 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6867impcom 407 . . . . . . . . . . . . 13 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
6968com13 88 . . . . . . . . . . . 12 (¬ (♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7032, 69pm2.61i 182 . . . . . . . . . . 11 (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7122, 70syl6 35 . . . . . . . . . 10 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7271ex 412 . . . . . . . . 9 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ∈ ℕ0 → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7372com23 86 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
749, 73sylbir 235 . . . . . . 7 (¬ (𝐾 = 0 ∨ 𝐾 = 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7574impcom 407 . . . . . 6 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7675com13 88 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 ∈ ℕ0 → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2))))
778, 76mpd 15 . . . 4 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7877com12 32 . . 3 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7978exp4b 430 . 2 (¬ 1 < 𝐾 → (¬ (𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))))
80 simprl 770 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FriendGraph )
81 simpl 482 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
8281ad2antlr 727 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ∈ Fin)
83 simpr 484 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
8483ad2antlr 727 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ≠ ∅)
85 simpl 482 . . . . . 6 ((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < 𝐾)
8685, 26anim12ci 614 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾))
876frgrreggt1 30372 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
8887imp 406 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾)) → 𝐾 = 2)
8980, 82, 84, 86, 88syl31anc 1375 . . . 4 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
9089olcd 874 . . 3 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9190exp31 419 . 2 (1 < 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
92 2a1 28 . 2 ((𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
9379, 91, 92pm2.61ii 183 1 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4292   class class class wbr 5102  cfv 6499  Fincfn 8895  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185  cn 12162  2c2 12217  0cn0 12418  0*cxnn0 12491  chash 14271  Vtxcvtx 28976  USGraphcusgr 29129  VtxDegcvtxdg 29446   RegUSGraph crusgr 29537   FriendGraph cfrgr 30237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-xadd 13049  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-reps 14710  df-csh 14730  df-s2 14790  df-s3 14791  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-vtx 28978  df-iedg 28979  df-edg 29028  df-uhgr 29038  df-ushgr 29039  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-fusgr 29297  df-nbgr 29313  df-vtxdg 29447  df-rgr 29538  df-rusgr 29539  df-wlks 29580  df-wlkson 29581  df-trls 29671  df-trlson 29672  df-pths 29694  df-spths 29695  df-pthson 29696  df-spthson 29697  df-wwlks 29810  df-wwlksn 29811  df-wwlksnon 29812  df-wspthsn 29813  df-wspthsnon 29814  df-clwwlk 29961  df-clwwlkn 30004  df-clwwlknon 30067  df-frgr 30238
This theorem is referenced by:  frgrregord013  30374
  Copyright terms: Public domain W3C validator