MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreg Structured version   Visualization version   GIF version

Theorem frgrreg 30426
Description: If a finite nonempty friendship graph is 𝐾-regular, then 𝐾 must be 2 (or 0). (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreg ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))

Proof of Theorem frgrreg
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ↔ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
2 ancom 460 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) ↔ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31, 2anbi12i 627 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) ↔ ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
43biimpi 216 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
54ancomd 461 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)))
6 frgrreggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
76numclwwlk7lem 30421 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
85, 7syl 17 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 ∈ ℕ0)
9 neanior 3041 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ↔ ¬ (𝐾 = 0 ∨ 𝐾 = 2))
10 nn0re 12562 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
11 1re 11290 . . . . . . . . . . . . . 14 1 ∈ ℝ
12 lenlt 11368 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1310, 11, 12sylancl 585 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1413adantl 481 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
15 elnnne0 12567 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
16 nnle1eq1 12323 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 ≤ 1 ↔ 𝐾 = 1))
1716biimpd 229 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → (𝐾 ≤ 1 → 𝐾 = 1))
1815, 17sylbir 235 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≤ 1 → 𝐾 = 1))
1918a1d 25 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≠ 2 → (𝐾 ≤ 1 → 𝐾 = 1)))
2019expimpd 453 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ≤ 1 → 𝐾 = 1)))
2120impcom 407 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 → 𝐾 = 1))
2214, 21sylbird 260 . . . . . . . . . . 11 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾𝐾 = 1))
236fveq2i 6923 . . . . . . . . . . . . . . . . . 18 (♯‘𝑉) = (♯‘(Vtx‘𝐺))
2423eqeq1i 2745 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) = 1 ↔ (♯‘(Vtx‘𝐺)) = 1)
2524biimpi 216 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) = 1 → (♯‘(Vtx‘𝐺)) = 1)
26 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
2726adantl 481 . . . . . . . . . . . . . . . 16 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 RegUSGraph 𝐾)
28 rusgr1vtx 29624 . . . . . . . . . . . . . . . 16 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)
2925, 27, 28syl2an 595 . . . . . . . . . . . . . . 15 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → 𝐾 = 0)
3029orcd 872 . . . . . . . . . . . . . 14 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → (𝐾 = 0 ∨ 𝐾 = 2))
3130ex 412 . . . . . . . . . . . . 13 ((♯‘𝑉) = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
3231a1d 25 . . . . . . . . . . . 12 ((♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
33 eqid 2740 . . . . . . . . . . . . . . . . 17 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
346, 33rusgrprop0 29603 . . . . . . . . . . . . . . . 16 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
35 simp2 1137 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 𝐺 ∈ FriendGraph )
36 hashnncl 14415 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅))
37 df-ne 2947 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
38 nngt1ne1 12322 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → (1 < (♯‘𝑉) ↔ (♯‘𝑉) ≠ 1))
3938biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → 1 < (♯‘𝑉)))
4037, 39biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4136, 40biimtrrdi 254 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉))))
4241imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4342impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < (♯‘𝑉))
446vdgn1frgrv3 30329 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
4535, 43, 443imp3i2an 1345 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
46 r19.26 3117 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
47 r19.2z 4518 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → ∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
48 neeq1 3009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ↔ 𝐾 ≠ 1))
4948biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 → 𝐾 ≠ 1))
5049impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ≠ 1)
51 eqneqall 2957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐾 = 1 → (𝐾 ≠ 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5251com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ≠ 1 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5350, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5453rexlimivw 3157 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5547, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5655ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ≠ ∅ → (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5746, 56biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ≠ ∅ → ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5857expd 415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
5958com34 91 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6059adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
61603ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6245, 61mpd 15 . . . . . . . . . . . . . . . . . . 19 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))
63623exp 1119 . . . . . . . . . . . . . . . . . 18 (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6463com15 101 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
65643ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6634, 65syl 17 . . . . . . . . . . . . . . 15 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6766impcom 407 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6867impcom 407 . . . . . . . . . . . . 13 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
6968com13 88 . . . . . . . . . . . 12 (¬ (♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7032, 69pm2.61i 182 . . . . . . . . . . 11 (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7122, 70syl6 35 . . . . . . . . . 10 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7271ex 412 . . . . . . . . 9 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ∈ ℕ0 → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7372com23 86 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
749, 73sylbir 235 . . . . . . 7 (¬ (𝐾 = 0 ∨ 𝐾 = 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7574impcom 407 . . . . . 6 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7675com13 88 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 ∈ ℕ0 → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2))))
778, 76mpd 15 . . . 4 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7877com12 32 . . 3 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7978exp4b 430 . 2 (¬ 1 < 𝐾 → (¬ (𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))))
80 simprl 770 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FriendGraph )
81 simpl 482 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
8281ad2antlr 726 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ∈ Fin)
83 simpr 484 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
8483ad2antlr 726 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ≠ ∅)
85 simpl 482 . . . . . 6 ((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < 𝐾)
8685, 26anim12ci 613 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾))
876frgrreggt1 30425 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
8887imp 406 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾)) → 𝐾 = 2)
8980, 82, 84, 86, 88syl31anc 1373 . . . 4 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
9089olcd 873 . . 3 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9190exp31 419 . 2 (1 < 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
92 2a1 28 . 2 ((𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
9379, 91, 92pm2.61ii 183 1 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  c0 4352   class class class wbr 5166  cfv 6573  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cle 11325  cn 12293  2c2 12348  0cn0 12553  0*cxnn0 12625  chash 14379  Vtxcvtx 29031  USGraphcusgr 29184  VtxDegcvtxdg 29501   RegUSGraph crusgr 29592   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-reps 14817  df-csh 14837  df-s2 14897  df-s3 14898  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-gcd 16541  df-prm 16719  df-phi 16813  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-fusgr 29352  df-nbgr 29368  df-vtxdg 29502  df-rgr 29593  df-rusgr 29594  df-wlks 29635  df-wlkson 29636  df-trls 29728  df-trlson 29729  df-pths 29752  df-spths 29753  df-pthson 29754  df-spthson 29755  df-wwlks 29863  df-wwlksn 29864  df-wwlksnon 29865  df-wspthsn 29866  df-wspthsnon 29867  df-clwwlk 30014  df-clwwlkn 30057  df-clwwlknon 30120  df-frgr 30291
This theorem is referenced by:  frgrregord013  30427
  Copyright terms: Public domain W3C validator