MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreg Structured version   Visualization version   GIF version

Theorem frgrreg 28659
Description: If a finite nonempty friendship graph is 𝐾-regular, then 𝐾 must be 2 (or 0). (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreg ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))

Proof of Theorem frgrreg
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ↔ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
2 ancom 460 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) ↔ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31, 2anbi12i 626 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) ↔ ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
43biimpi 215 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
54ancomd 461 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)))
6 frgrreggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
76numclwwlk7lem 28654 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
85, 7syl 17 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 ∈ ℕ0)
9 neanior 3036 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ↔ ¬ (𝐾 = 0 ∨ 𝐾 = 2))
10 nn0re 12172 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
11 1re 10906 . . . . . . . . . . . . . 14 1 ∈ ℝ
12 lenlt 10984 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1310, 11, 12sylancl 585 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1413adantl 481 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
15 elnnne0 12177 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
16 nnle1eq1 11933 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 ≤ 1 ↔ 𝐾 = 1))
1716biimpd 228 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → (𝐾 ≤ 1 → 𝐾 = 1))
1815, 17sylbir 234 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≤ 1 → 𝐾 = 1))
1918a1d 25 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≠ 2 → (𝐾 ≤ 1 → 𝐾 = 1)))
2019expimpd 453 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ≤ 1 → 𝐾 = 1)))
2120impcom 407 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 → 𝐾 = 1))
2214, 21sylbird 259 . . . . . . . . . . 11 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾𝐾 = 1))
236fveq2i 6759 . . . . . . . . . . . . . . . . . 18 (♯‘𝑉) = (♯‘(Vtx‘𝐺))
2423eqeq1i 2743 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) = 1 ↔ (♯‘(Vtx‘𝐺)) = 1)
2524biimpi 215 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) = 1 → (♯‘(Vtx‘𝐺)) = 1)
26 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
2726adantl 481 . . . . . . . . . . . . . . . 16 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 RegUSGraph 𝐾)
28 rusgr1vtx 27858 . . . . . . . . . . . . . . . 16 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)
2925, 27, 28syl2an 595 . . . . . . . . . . . . . . 15 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → 𝐾 = 0)
3029orcd 869 . . . . . . . . . . . . . 14 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → (𝐾 = 0 ∨ 𝐾 = 2))
3130ex 412 . . . . . . . . . . . . 13 ((♯‘𝑉) = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
3231a1d 25 . . . . . . . . . . . 12 ((♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
33 eqid 2738 . . . . . . . . . . . . . . . . 17 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
346, 33rusgrprop0 27837 . . . . . . . . . . . . . . . 16 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
35 simp2 1135 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 𝐺 ∈ FriendGraph )
36 hashnncl 14009 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅))
37 df-ne 2943 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
38 nngt1ne1 11932 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → (1 < (♯‘𝑉) ↔ (♯‘𝑉) ≠ 1))
3938biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → 1 < (♯‘𝑉)))
4037, 39syl5bir 242 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4136, 40syl6bir 253 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉))))
4241imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4342impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < (♯‘𝑉))
446vdgn1frgrv3 28562 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
4535, 43, 443imp3i2an 1343 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
46 r19.26 3094 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
47 r19.2z 4422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → ∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
48 neeq1 3005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ↔ 𝐾 ≠ 1))
4948biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 → 𝐾 ≠ 1))
5049impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ≠ 1)
51 eqneqall 2953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐾 = 1 → (𝐾 ≠ 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5251com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ≠ 1 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5350, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5453rexlimivw 3210 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5547, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5655ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ≠ ∅ → (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5746, 56syl5bir 242 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ≠ ∅ → ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5857expd 415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
5958com34 91 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6059adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
61603ad2ant3 1133 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6245, 61mpd 15 . . . . . . . . . . . . . . . . . . 19 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))
63623exp 1117 . . . . . . . . . . . . . . . . . 18 (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6463com15 101 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
65643ad2ant3 1133 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6634, 65syl 17 . . . . . . . . . . . . . . 15 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6766impcom 407 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6867impcom 407 . . . . . . . . . . . . 13 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
6968com13 88 . . . . . . . . . . . 12 (¬ (♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7032, 69pm2.61i 182 . . . . . . . . . . 11 (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7122, 70syl6 35 . . . . . . . . . 10 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7271ex 412 . . . . . . . . 9 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ∈ ℕ0 → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7372com23 86 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
749, 73sylbir 234 . . . . . . 7 (¬ (𝐾 = 0 ∨ 𝐾 = 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7574impcom 407 . . . . . 6 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7675com13 88 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 ∈ ℕ0 → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2))))
778, 76mpd 15 . . . 4 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7877com12 32 . . 3 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7978exp4b 430 . 2 (¬ 1 < 𝐾 → (¬ (𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))))
80 simprl 767 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FriendGraph )
81 simpl 482 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
8281ad2antlr 723 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ∈ Fin)
83 simpr 484 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
8483ad2antlr 723 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ≠ ∅)
85 simpl 482 . . . . . 6 ((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < 𝐾)
8685, 26anim12ci 613 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾))
876frgrreggt1 28658 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
8887imp 406 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾)) → 𝐾 = 2)
8980, 82, 84, 86, 88syl31anc 1371 . . . 4 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
9089olcd 870 . . 3 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9190exp31 419 . 2 (1 < 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
92 2a1 28 . 2 ((𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
9379, 91, 92pm2.61ii 183 1 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253   class class class wbr 5070  cfv 6418  Fincfn 8691  cr 10801  0cc0 10802  1c1 10803   < clt 10940  cle 10941  cn 11903  2c2 11958  0cn0 12163  0*cxnn0 12235  chash 13972  Vtxcvtx 27269  USGraphcusgr 27422  VtxDegcvtxdg 27735   RegUSGraph crusgr 27826   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-reps 14410  df-csh 14430  df-s2 14489  df-s3 14490  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-phi 16395  df-vtx 27271  df-iedg 27272  df-edg 27321  df-uhgr 27331  df-ushgr 27332  df-upgr 27355  df-umgr 27356  df-uspgr 27423  df-usgr 27424  df-fusgr 27587  df-nbgr 27603  df-vtxdg 27736  df-rgr 27827  df-rusgr 27828  df-wlks 27869  df-wlkson 27870  df-trls 27962  df-trlson 27963  df-pths 27985  df-spths 27986  df-pthson 27987  df-spthson 27988  df-wwlks 28096  df-wwlksn 28097  df-wwlksnon 28098  df-wspthsn 28099  df-wspthsnon 28100  df-clwwlk 28247  df-clwwlkn 28290  df-clwwlknon 28353  df-frgr 28524
This theorem is referenced by:  frgrregord013  28660
  Copyright terms: Public domain W3C validator