MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreg Structured version   Visualization version   GIF version

Theorem frgrreg 30342
Description: If a finite nonempty friendship graph is 𝐾-regular, then 𝐾 must be 2 (or 0). (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreg ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))

Proof of Theorem frgrreg
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ↔ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
2 ancom 460 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) ↔ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31, 2anbi12i 628 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) ↔ ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
43biimpi 216 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
54ancomd 461 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)))
6 frgrreggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
76numclwwlk7lem 30337 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
85, 7syl 17 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 ∈ ℕ0)
9 neanior 3018 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ↔ ¬ (𝐾 = 0 ∨ 𝐾 = 2))
10 nn0re 12393 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
11 1re 11115 . . . . . . . . . . . . . 14 1 ∈ ℝ
12 lenlt 11194 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1310, 11, 12sylancl 586 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1413adantl 481 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
15 elnnne0 12398 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
16 nnle1eq1 12158 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 ≤ 1 ↔ 𝐾 = 1))
1716biimpd 229 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → (𝐾 ≤ 1 → 𝐾 = 1))
1815, 17sylbir 235 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≤ 1 → 𝐾 = 1))
1918a1d 25 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≠ 2 → (𝐾 ≤ 1 → 𝐾 = 1)))
2019expimpd 453 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ≤ 1 → 𝐾 = 1)))
2120impcom 407 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 → 𝐾 = 1))
2214, 21sylbird 260 . . . . . . . . . . 11 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾𝐾 = 1))
236fveq2i 6825 . . . . . . . . . . . . . . . . . 18 (♯‘𝑉) = (♯‘(Vtx‘𝐺))
2423eqeq1i 2734 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) = 1 ↔ (♯‘(Vtx‘𝐺)) = 1)
2524biimpi 216 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) = 1 → (♯‘(Vtx‘𝐺)) = 1)
26 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
2726adantl 481 . . . . . . . . . . . . . . . 16 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 RegUSGraph 𝐾)
28 rusgr1vtx 29538 . . . . . . . . . . . . . . . 16 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)
2925, 27, 28syl2an 596 . . . . . . . . . . . . . . 15 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → 𝐾 = 0)
3029orcd 873 . . . . . . . . . . . . . 14 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → (𝐾 = 0 ∨ 𝐾 = 2))
3130ex 412 . . . . . . . . . . . . 13 ((♯‘𝑉) = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
3231a1d 25 . . . . . . . . . . . 12 ((♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
33 eqid 2729 . . . . . . . . . . . . . . . . 17 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
346, 33rusgrprop0 29517 . . . . . . . . . . . . . . . 16 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
35 simp2 1137 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 𝐺 ∈ FriendGraph )
36 hashnncl 14273 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅))
37 df-ne 2926 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
38 nngt1ne1 12157 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → (1 < (♯‘𝑉) ↔ (♯‘𝑉) ≠ 1))
3938biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → 1 < (♯‘𝑉)))
4037, 39biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4136, 40biimtrrdi 254 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉))))
4241imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4342impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < (♯‘𝑉))
446vdgn1frgrv3 30245 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
4535, 43, 443imp3i2an 1346 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
46 r19.26 3089 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
47 r19.2z 4446 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → ∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
48 neeq1 2987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ↔ 𝐾 ≠ 1))
4948biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 → 𝐾 ≠ 1))
5049impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ≠ 1)
51 eqneqall 2936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐾 = 1 → (𝐾 ≠ 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5251com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ≠ 1 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5350, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5453rexlimivw 3126 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5547, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5655ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ≠ ∅ → (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5746, 56biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ≠ ∅ → ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5857expd 415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
5958com34 91 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6059adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
61603ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6245, 61mpd 15 . . . . . . . . . . . . . . . . . . 19 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))
63623exp 1119 . . . . . . . . . . . . . . . . . 18 (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6463com15 101 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
65643ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6634, 65syl 17 . . . . . . . . . . . . . . 15 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6766impcom 407 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6867impcom 407 . . . . . . . . . . . . 13 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
6968com13 88 . . . . . . . . . . . 12 (¬ (♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7032, 69pm2.61i 182 . . . . . . . . . . 11 (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7122, 70syl6 35 . . . . . . . . . 10 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7271ex 412 . . . . . . . . 9 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ∈ ℕ0 → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7372com23 86 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
749, 73sylbir 235 . . . . . . 7 (¬ (𝐾 = 0 ∨ 𝐾 = 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7574impcom 407 . . . . . 6 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7675com13 88 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 ∈ ℕ0 → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2))))
778, 76mpd 15 . . . 4 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7877com12 32 . . 3 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7978exp4b 430 . 2 (¬ 1 < 𝐾 → (¬ (𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))))
80 simprl 770 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FriendGraph )
81 simpl 482 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
8281ad2antlr 727 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ∈ Fin)
83 simpr 484 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
8483ad2antlr 727 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ≠ ∅)
85 simpl 482 . . . . . 6 ((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < 𝐾)
8685, 26anim12ci 614 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾))
876frgrreggt1 30341 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
8887imp 406 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾)) → 𝐾 = 2)
8980, 82, 84, 86, 88syl31anc 1375 . . . 4 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
9089olcd 874 . . 3 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9190exp31 419 . 2 (1 < 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
92 2a1 28 . 2 ((𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
9379, 91, 92pm2.61ii 183 1 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4284   class class class wbr 5092  cfv 6482  Fincfn 8872  cr 11008  0cc0 11009  1c1 11010   < clt 11149  cle 11150  cn 12128  2c2 12183  0cn0 12384  0*cxnn0 12457  chash 14237  Vtxcvtx 28945  USGraphcusgr 29098  VtxDegcvtxdg 29415   RegUSGraph crusgr 29506   FriendGraph cfrgr 30206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-xadd 13015  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-reps 14675  df-csh 14695  df-s2 14755  df-s3 14756  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-vtx 28947  df-iedg 28948  df-edg 28997  df-uhgr 29007  df-ushgr 29008  df-upgr 29031  df-umgr 29032  df-uspgr 29099  df-usgr 29100  df-fusgr 29266  df-nbgr 29282  df-vtxdg 29416  df-rgr 29507  df-rusgr 29508  df-wlks 29549  df-wlkson 29550  df-trls 29640  df-trlson 29641  df-pths 29663  df-spths 29664  df-pthson 29665  df-spthson 29666  df-wwlks 29779  df-wwlksn 29780  df-wwlksnon 29781  df-wspthsn 29782  df-wspthsnon 29783  df-clwwlk 29930  df-clwwlkn 29973  df-clwwlknon 30036  df-frgr 30207
This theorem is referenced by:  frgrregord013  30343
  Copyright terms: Public domain W3C validator