MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrreg Structured version   Visualization version   GIF version

Theorem frgrreg 30414
Description: If a finite nonempty friendship graph is 𝐾-regular, then 𝐾 must be 2 (or 0). (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 3-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrreg ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))

Proof of Theorem frgrreg
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ancom 460 . . . . . . . . 9 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ↔ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin))
2 ancom 460 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) ↔ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ))
31, 2anbi12i 628 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) ↔ ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
43biimpi 216 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) ∧ (𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph )))
54ancomd 461 . . . . . 6 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)))
6 frgrreggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
76numclwwlk7lem 30409 . . . . . 6 (((𝐺 RegUSGraph 𝐾𝐺 ∈ FriendGraph ) ∧ (𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐾 ∈ ℕ0)
85, 7syl 17 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 ∈ ℕ0)
9 neanior 3034 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ↔ ¬ (𝐾 = 0 ∨ 𝐾 = 2))
10 nn0re 12537 . . . . . . . . . . . . . 14 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
11 1re 11262 . . . . . . . . . . . . . 14 1 ∈ ℝ
12 lenlt 11340 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1310, 11, 12sylancl 586 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
1413adantl 481 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 ↔ ¬ 1 < 𝐾))
15 elnnne0 12542 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
16 nnle1eq1 12297 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ℕ → (𝐾 ≤ 1 ↔ 𝐾 = 1))
1716biimpd 229 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → (𝐾 ≤ 1 → 𝐾 = 1))
1815, 17sylbir 235 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≤ 1 → 𝐾 = 1))
1918a1d 25 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → (𝐾 ≠ 2 → (𝐾 ≤ 1 → 𝐾 = 1)))
2019expimpd 453 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ≤ 1 → 𝐾 = 1)))
2120impcom 407 . . . . . . . . . . . 12 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (𝐾 ≤ 1 → 𝐾 = 1))
2214, 21sylbird 260 . . . . . . . . . . 11 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾𝐾 = 1))
236fveq2i 6908 . . . . . . . . . . . . . . . . . 18 (♯‘𝑉) = (♯‘(Vtx‘𝐺))
2423eqeq1i 2741 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) = 1 ↔ (♯‘(Vtx‘𝐺)) = 1)
2524biimpi 216 . . . . . . . . . . . . . . . 16 ((♯‘𝑉) = 1 → (♯‘(Vtx‘𝐺)) = 1)
26 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
2726adantl 481 . . . . . . . . . . . . . . . 16 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 RegUSGraph 𝐾)
28 rusgr1vtx 29607 . . . . . . . . . . . . . . . 16 (((♯‘(Vtx‘𝐺)) = 1 ∧ 𝐺 RegUSGraph 𝐾) → 𝐾 = 0)
2925, 27, 28syl2an 596 . . . . . . . . . . . . . . 15 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → 𝐾 = 0)
3029orcd 873 . . . . . . . . . . . . . 14 (((♯‘𝑉) = 1 ∧ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾))) → (𝐾 = 0 ∨ 𝐾 = 2))
3130ex 412 . . . . . . . . . . . . 13 ((♯‘𝑉) = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
3231a1d 25 . . . . . . . . . . . 12 ((♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
33 eqid 2736 . . . . . . . . . . . . . . . . 17 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
346, 33rusgrprop0 29586 . . . . . . . . . . . . . . . 16 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
35 simp2 1137 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 𝐺 ∈ FriendGraph )
36 hashnncl 14406 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅))
37 df-ne 2940 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ≠ 1 ↔ ¬ (♯‘𝑉) = 1)
38 nngt1ne1 12296 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑉) ∈ ℕ → (1 < (♯‘𝑉) ↔ (♯‘𝑉) ≠ 1))
3938biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) ≠ 1 → 1 < (♯‘𝑉)))
4037, 39biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑉) ∈ ℕ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4136, 40biimtrrdi 254 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉))))
4241imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (¬ (♯‘𝑉) = 1 → 1 < (♯‘𝑉)))
4342impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((¬ (♯‘𝑉) = 1 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < (♯‘𝑉))
446vdgn1frgrv3 30317 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ FriendGraph ∧ 1 < (♯‘𝑉)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
4535, 43, 443imp3i2an 1345 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1)
46 r19.26 3110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
47 r19.2z 4494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → ∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
48 neeq1 3002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ↔ 𝐾 ≠ 1))
4948biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ≠ 1 → 𝐾 ≠ 1))
5049impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ≠ 1)
51 eqneqall 2950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐾 = 1 → (𝐾 ≠ 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5251com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐾 ≠ 1 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5350, 52syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5453rexlimivw 3150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5547, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))
5655ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑉 ≠ ∅ → (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5746, 56biimtrrid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑉 ≠ ∅ → ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
5857expd 415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
5958com34 91 . . . . . . . . . . . . . . . . . . . . . 22 (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6059adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
61603ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ≠ 1 → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6245, 61mpd 15 . . . . . . . . . . . . . . . . . . 19 ((¬ (♯‘𝑉) = 1 ∧ 𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))
63623exp 1119 . . . . . . . . . . . . . . . . . 18 (¬ (♯‘𝑉) = 1 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6463com15 101 . . . . . . . . . . . . . . . . 17 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
65643ad2ant3 1135 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6634, 65syl 17 . . . . . . . . . . . . . . 15 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ FriendGraph → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))))
6766impcom 407 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2)))))
6867impcom 407 . . . . . . . . . . . . 13 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 1 → (¬ (♯‘𝑉) = 1 → (𝐾 = 0 ∨ 𝐾 = 2))))
6968com13 88 . . . . . . . . . . . 12 (¬ (♯‘𝑉) = 1 → (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7032, 69pm2.61i 182 . . . . . . . . . . 11 (𝐾 = 1 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7122, 70syl6 35 . . . . . . . . . 10 (((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) ∧ 𝐾 ∈ ℕ0) → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7271ex 412 . . . . . . . . 9 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (𝐾 ∈ ℕ0 → (¬ 1 < 𝐾 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7372com23 86 . . . . . . . 8 ((𝐾 ≠ 0 ∧ 𝐾 ≠ 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
749, 73sylbir 235 . . . . . . 7 (¬ (𝐾 = 0 ∨ 𝐾 = 2) → (¬ 1 < 𝐾 → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))))
7574impcom 407 . . . . . 6 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 ∈ ℕ0 → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))))
7675com13 88 . . . . 5 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 ∈ ℕ0 → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2))))
778, 76mpd 15 . . . 4 (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7877com12 32 . . 3 ((¬ 1 < 𝐾 ∧ ¬ (𝐾 = 0 ∨ 𝐾 = 2)) → (((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2)))
7978exp4b 430 . 2 (¬ 1 < 𝐾 → (¬ (𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))))
80 simprl 770 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐺 ∈ FriendGraph )
81 simpl 482 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
8281ad2antlr 727 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ∈ Fin)
83 simpr 484 . . . . . 6 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝑉 ≠ ∅)
8483ad2antlr 727 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝑉 ≠ ∅)
85 simpl 482 . . . . . 6 ((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → 1 < 𝐾)
8685, 26anim12ci 614 . . . . 5 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾))
876frgrreggt1 30413 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾) → 𝐾 = 2))
8887imp 406 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ (𝐺 RegUSGraph 𝐾 ∧ 1 < 𝐾)) → 𝐾 = 2)
8980, 82, 84, 86, 88syl31anc 1374 . . . 4 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → 𝐾 = 2)
9089olcd 874 . . 3 (((1 < 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) ∧ (𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾)) → (𝐾 = 0 ∨ 𝐾 = 2))
9190exp31 419 . 2 (1 < 𝐾 → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
92 2a1 28 . 2 ((𝐾 = 0 ∨ 𝐾 = 2) → ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2))))
9379, 91, 92pm2.61ii 183 1 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (𝐾 = 0 ∨ 𝐾 = 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  c0 4332   class class class wbr 5142  cfv 6560  Fincfn 8986  cr 11155  0cc0 11156  1c1 11157   < clt 11296  cle 11297  cn 12267  2c2 12322  0cn0 12528  0*cxnn0 12601  chash 14370  Vtxcvtx 29014  USGraphcusgr 29167  VtxDegcvtxdg 29484   RegUSGraph crusgr 29575   FriendGraph cfrgr 30278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-ac2 10504  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-ac 10157  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-rp 13036  df-xadd 13156  df-ico 13394  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-reps 14808  df-csh 14828  df-s2 14888  df-s3 14889  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-dvds 16292  df-gcd 16533  df-prm 16710  df-phi 16804  df-vtx 29016  df-iedg 29017  df-edg 29066  df-uhgr 29076  df-ushgr 29077  df-upgr 29100  df-umgr 29101  df-uspgr 29168  df-usgr 29169  df-fusgr 29335  df-nbgr 29351  df-vtxdg 29485  df-rgr 29576  df-rusgr 29577  df-wlks 29618  df-wlkson 29619  df-trls 29711  df-trlson 29712  df-pths 29735  df-spths 29736  df-pthson 29737  df-spthson 29738  df-wwlks 29851  df-wwlksn 29852  df-wwlksnon 29853  df-wspthsn 29854  df-wspthsnon 29855  df-clwwlk 30002  df-clwwlkn 30045  df-clwwlknon 30108  df-frgr 30279
This theorem is referenced by:  frgrregord013  30415
  Copyright terms: Public domain W3C validator