| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > odd2prm2 | Structured version Visualization version GIF version | ||
| Description: If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.) |
| Ref | Expression |
|---|---|
| odd2prm2 | ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2822 | . . . . . 6 ⊢ (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd ↔ (𝑃 + 𝑄) ∈ Odd )) | |
| 2 | evennodd 47657 | . . . . . . . . 9 ⊢ ((𝑃 + 𝑄) ∈ Even → ¬ (𝑃 + 𝑄) ∈ Odd ) | |
| 3 | 2 | pm2.21d 121 | . . . . . . . 8 ⊢ ((𝑃 + 𝑄) ∈ Even → ((𝑃 + 𝑄) ∈ Odd → (𝑃 = 2 ∨ 𝑄 = 2))) |
| 4 | df-ne 2933 | . . . . . . . . . . . 12 ⊢ (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2) | |
| 5 | eldifsn 4762 | . . . . . . . . . . . . . 14 ⊢ (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
| 6 | oddprmALTV 47701 | . . . . . . . . . . . . . 14 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd ) | |
| 7 | 5, 6 | sylbir 235 | . . . . . . . . . . . . 13 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ Odd ) |
| 8 | 7 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ Odd )) |
| 9 | 4, 8 | biimtrrid 243 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ Odd )) |
| 10 | df-ne 2933 | . . . . . . . . . . . 12 ⊢ (𝑄 ≠ 2 ↔ ¬ 𝑄 = 2) | |
| 11 | eldifsn 4762 | . . . . . . . . . . . . . 14 ⊢ (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2)) | |
| 12 | oddprmALTV 47701 | . . . . . . . . . . . . . 14 ⊢ (𝑄 ∈ (ℙ ∖ {2}) → 𝑄 ∈ Odd ) | |
| 13 | 11, 12 | sylbir 235 | . . . . . . . . . . . . 13 ⊢ ((𝑄 ∈ ℙ ∧ 𝑄 ≠ 2) → 𝑄 ∈ Odd ) |
| 14 | 13 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑄 ∈ ℙ → (𝑄 ≠ 2 → 𝑄 ∈ Odd )) |
| 15 | 10, 14 | biimtrrid 243 | . . . . . . . . . . 11 ⊢ (𝑄 ∈ ℙ → (¬ 𝑄 = 2 → 𝑄 ∈ Odd )) |
| 16 | 9, 15 | im2anan9 620 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) |
| 17 | 16 | imp 406 | . . . . . . . . 9 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd )) |
| 18 | opoeALTV 47697 | . . . . . . . . 9 ⊢ ((𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ) → (𝑃 + 𝑄) ∈ Even ) | |
| 19 | 17, 18 | syl 17 | . . . . . . . 8 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 + 𝑄) ∈ Even ) |
| 20 | 3, 19 | syl11 33 | . . . . . . 7 ⊢ ((𝑃 + 𝑄) ∈ Odd → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
| 21 | 20 | expd 415 | . . . . . 6 ⊢ ((𝑃 + 𝑄) ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2)))) |
| 22 | 1, 21 | biimtrdi 253 | . . . . 5 ⊢ (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))))) |
| 23 | 22 | 3imp231 1112 | . . . 4 ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))) |
| 24 | 23 | com12 32 | . . 3 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
| 25 | 24 | ex 412 | . 2 ⊢ (¬ 𝑃 = 2 → (¬ 𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))) |
| 26 | orc 867 | . . 3 ⊢ (𝑃 = 2 → (𝑃 = 2 ∨ 𝑄 = 2)) | |
| 27 | 26 | a1d 25 | . 2 ⊢ (𝑃 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
| 28 | olc 868 | . . 3 ⊢ (𝑄 = 2 → (𝑃 = 2 ∨ 𝑄 = 2)) | |
| 29 | 28 | a1d 25 | . 2 ⊢ (𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
| 30 | 25, 27, 29 | pm2.61ii 183 | 1 ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 (class class class)co 7405 + caddc 11132 2c2 12295 ℙcprime 16690 Even ceven 47638 Odd codd 47639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 df-even 47640 df-odd 47641 |
| This theorem is referenced by: even3prm2 47733 |
| Copyright terms: Public domain | W3C validator |