![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > odd2prm2 | Structured version Visualization version GIF version |
Description: If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.) |
Ref | Expression |
---|---|
odd2prm2 | ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2832 | . . . . . 6 ⊢ (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd ↔ (𝑃 + 𝑄) ∈ Odd )) | |
2 | evennodd 47517 | . . . . . . . . 9 ⊢ ((𝑃 + 𝑄) ∈ Even → ¬ (𝑃 + 𝑄) ∈ Odd ) | |
3 | 2 | pm2.21d 121 | . . . . . . . 8 ⊢ ((𝑃 + 𝑄) ∈ Even → ((𝑃 + 𝑄) ∈ Odd → (𝑃 = 2 ∨ 𝑄 = 2))) |
4 | df-ne 2947 | . . . . . . . . . . . 12 ⊢ (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2) | |
5 | eldifsn 4811 | . . . . . . . . . . . . . 14 ⊢ (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
6 | oddprmALTV 47561 | . . . . . . . . . . . . . 14 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd ) | |
7 | 5, 6 | sylbir 235 | . . . . . . . . . . . . 13 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ Odd ) |
8 | 7 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ Odd )) |
9 | 4, 8 | biimtrrid 243 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ Odd )) |
10 | df-ne 2947 | . . . . . . . . . . . 12 ⊢ (𝑄 ≠ 2 ↔ ¬ 𝑄 = 2) | |
11 | eldifsn 4811 | . . . . . . . . . . . . . 14 ⊢ (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2)) | |
12 | oddprmALTV 47561 | . . . . . . . . . . . . . 14 ⊢ (𝑄 ∈ (ℙ ∖ {2}) → 𝑄 ∈ Odd ) | |
13 | 11, 12 | sylbir 235 | . . . . . . . . . . . . 13 ⊢ ((𝑄 ∈ ℙ ∧ 𝑄 ≠ 2) → 𝑄 ∈ Odd ) |
14 | 13 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑄 ∈ ℙ → (𝑄 ≠ 2 → 𝑄 ∈ Odd )) |
15 | 10, 14 | biimtrrid 243 | . . . . . . . . . . 11 ⊢ (𝑄 ∈ ℙ → (¬ 𝑄 = 2 → 𝑄 ∈ Odd )) |
16 | 9, 15 | im2anan9 619 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) |
17 | 16 | imp 406 | . . . . . . . . 9 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd )) |
18 | opoeALTV 47557 | . . . . . . . . 9 ⊢ ((𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ) → (𝑃 + 𝑄) ∈ Even ) | |
19 | 17, 18 | syl 17 | . . . . . . . 8 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 + 𝑄) ∈ Even ) |
20 | 3, 19 | syl11 33 | . . . . . . 7 ⊢ ((𝑃 + 𝑄) ∈ Odd → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
21 | 20 | expd 415 | . . . . . 6 ⊢ ((𝑃 + 𝑄) ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2)))) |
22 | 1, 21 | biimtrdi 253 | . . . . 5 ⊢ (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))))) |
23 | 22 | 3imp231 1113 | . . . 4 ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))) |
24 | 23 | com12 32 | . . 3 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
25 | 24 | ex 412 | . 2 ⊢ (¬ 𝑃 = 2 → (¬ 𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))) |
26 | orc 866 | . . 3 ⊢ (𝑃 = 2 → (𝑃 = 2 ∨ 𝑄 = 2)) | |
27 | 26 | a1d 25 | . 2 ⊢ (𝑃 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
28 | olc 867 | . . 3 ⊢ (𝑄 = 2 → (𝑃 = 2 ∨ 𝑄 = 2)) | |
29 | 28 | a1d 25 | . 2 ⊢ (𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
30 | 25, 27, 29 | pm2.61ii 183 | 1 ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 (class class class)co 7448 + caddc 11187 2c2 12348 ℙcprime 16718 Even ceven 47498 Odd codd 47499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-prm 16719 df-even 47500 df-odd 47501 |
This theorem is referenced by: even3prm2 47593 |
Copyright terms: Public domain | W3C validator |