![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > odd2prm2 | Structured version Visualization version GIF version |
Description: If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.) |
Ref | Expression |
---|---|
odd2prm2 | ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2866 | . . . . . 6 ⊢ (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd ↔ (𝑃 + 𝑄) ∈ Odd )) | |
2 | evennodd 42334 | . . . . . . . . 9 ⊢ ((𝑃 + 𝑄) ∈ Even → ¬ (𝑃 + 𝑄) ∈ Odd ) | |
3 | 2 | pm2.21d 119 | . . . . . . . 8 ⊢ ((𝑃 + 𝑄) ∈ Even → ((𝑃 + 𝑄) ∈ Odd → (𝑃 = 2 ∨ 𝑄 = 2))) |
4 | df-ne 2972 | . . . . . . . . . . . 12 ⊢ (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2) | |
5 | eldifsn 4506 | . . . . . . . . . . . . . 14 ⊢ (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
6 | oddprmALTV 42376 | . . . . . . . . . . . . . 14 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd ) | |
7 | 5, 6 | sylbir 227 | . . . . . . . . . . . . 13 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ Odd ) |
8 | 7 | ex 402 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ Odd )) |
9 | 4, 8 | syl5bir 235 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ Odd )) |
10 | df-ne 2972 | . . . . . . . . . . . 12 ⊢ (𝑄 ≠ 2 ↔ ¬ 𝑄 = 2) | |
11 | eldifsn 4506 | . . . . . . . . . . . . . 14 ⊢ (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2)) | |
12 | oddprmALTV 42376 | . . . . . . . . . . . . . 14 ⊢ (𝑄 ∈ (ℙ ∖ {2}) → 𝑄 ∈ Odd ) | |
13 | 11, 12 | sylbir 227 | . . . . . . . . . . . . 13 ⊢ ((𝑄 ∈ ℙ ∧ 𝑄 ≠ 2) → 𝑄 ∈ Odd ) |
14 | 13 | ex 402 | . . . . . . . . . . . 12 ⊢ (𝑄 ∈ ℙ → (𝑄 ≠ 2 → 𝑄 ∈ Odd )) |
15 | 10, 14 | syl5bir 235 | . . . . . . . . . . 11 ⊢ (𝑄 ∈ ℙ → (¬ 𝑄 = 2 → 𝑄 ∈ Odd )) |
16 | 9, 15 | im2anan9 614 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) |
17 | 16 | imp 396 | . . . . . . . . 9 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd )) |
18 | opoeALTV 42372 | . . . . . . . . 9 ⊢ ((𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ) → (𝑃 + 𝑄) ∈ Even ) | |
19 | 17, 18 | syl 17 | . . . . . . . 8 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 + 𝑄) ∈ Even ) |
20 | 3, 19 | syl11 33 | . . . . . . 7 ⊢ ((𝑃 + 𝑄) ∈ Odd → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
21 | 20 | expd 405 | . . . . . 6 ⊢ ((𝑃 + 𝑄) ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2)))) |
22 | 1, 21 | syl6bi 245 | . . . . 5 ⊢ (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))))) |
23 | 22 | 3imp231 1141 | . . . 4 ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))) |
24 | 23 | com12 32 | . . 3 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
25 | 24 | ex 402 | . 2 ⊢ (¬ 𝑃 = 2 → (¬ 𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))) |
26 | orc 894 | . . 3 ⊢ (𝑃 = 2 → (𝑃 = 2 ∨ 𝑄 = 2)) | |
27 | 26 | a1d 25 | . 2 ⊢ (𝑃 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
28 | olc 895 | . . 3 ⊢ (𝑄 = 2 → (𝑃 = 2 ∨ 𝑄 = 2)) | |
29 | 28 | a1d 25 | . 2 ⊢ (𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
30 | 25, 27, 29 | pm2.61ii 178 | 1 ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∖ cdif 3766 {csn 4368 (class class class)co 6878 + caddc 10227 2c2 11368 ℙcprime 15719 Even ceven 42315 Odd codd 42316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-dvds 15320 df-prm 15720 df-even 42317 df-odd 42318 |
This theorem is referenced by: even3prm2 42406 |
Copyright terms: Public domain | W3C validator |