Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > odd2prm2 | Structured version Visualization version GIF version |
Description: If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.) |
Ref | Expression |
---|---|
odd2prm2 | ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . . 6 ⊢ (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd ↔ (𝑃 + 𝑄) ∈ Odd )) | |
2 | evennodd 45095 | . . . . . . . . 9 ⊢ ((𝑃 + 𝑄) ∈ Even → ¬ (𝑃 + 𝑄) ∈ Odd ) | |
3 | 2 | pm2.21d 121 | . . . . . . . 8 ⊢ ((𝑃 + 𝑄) ∈ Even → ((𝑃 + 𝑄) ∈ Odd → (𝑃 = 2 ∨ 𝑄 = 2))) |
4 | df-ne 2944 | . . . . . . . . . . . 12 ⊢ (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2) | |
5 | eldifsn 4720 | . . . . . . . . . . . . . 14 ⊢ (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) | |
6 | oddprmALTV 45139 | . . . . . . . . . . . . . 14 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd ) | |
7 | 5, 6 | sylbir 234 | . . . . . . . . . . . . 13 ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 𝑃 ∈ Odd ) |
8 | 7 | ex 413 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 𝑃 ∈ Odd )) |
9 | 4, 8 | syl5bir 242 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (¬ 𝑃 = 2 → 𝑃 ∈ Odd )) |
10 | df-ne 2944 | . . . . . . . . . . . 12 ⊢ (𝑄 ≠ 2 ↔ ¬ 𝑄 = 2) | |
11 | eldifsn 4720 | . . . . . . . . . . . . . 14 ⊢ (𝑄 ∈ (ℙ ∖ {2}) ↔ (𝑄 ∈ ℙ ∧ 𝑄 ≠ 2)) | |
12 | oddprmALTV 45139 | . . . . . . . . . . . . . 14 ⊢ (𝑄 ∈ (ℙ ∖ {2}) → 𝑄 ∈ Odd ) | |
13 | 11, 12 | sylbir 234 | . . . . . . . . . . . . 13 ⊢ ((𝑄 ∈ ℙ ∧ 𝑄 ≠ 2) → 𝑄 ∈ Odd ) |
14 | 13 | ex 413 | . . . . . . . . . . . 12 ⊢ (𝑄 ∈ ℙ → (𝑄 ≠ 2 → 𝑄 ∈ Odd )) |
15 | 10, 14 | syl5bir 242 | . . . . . . . . . . 11 ⊢ (𝑄 ∈ ℙ → (¬ 𝑄 = 2 → 𝑄 ∈ Odd )) |
16 | 9, 15 | im2anan9 620 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) |
17 | 16 | imp 407 | . . . . . . . . 9 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd )) |
18 | opoeALTV 45135 | . . . . . . . . 9 ⊢ ((𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ) → (𝑃 + 𝑄) ∈ Even ) | |
19 | 17, 18 | syl 17 | . . . . . . . 8 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 + 𝑄) ∈ Even ) |
20 | 3, 19 | syl11 33 | . . . . . . 7 ⊢ ((𝑃 + 𝑄) ∈ Odd → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
21 | 20 | expd 416 | . . . . . 6 ⊢ ((𝑃 + 𝑄) ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2)))) |
22 | 1, 21 | syl6bi 252 | . . . . 5 ⊢ (𝑁 = (𝑃 + 𝑄) → (𝑁 ∈ Odd → ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))))) |
23 | 22 | 3imp231 1112 | . . . 4 ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → (𝑃 = 2 ∨ 𝑄 = 2))) |
24 | 23 | com12 32 | . . 3 ⊢ ((¬ 𝑃 = 2 ∧ ¬ 𝑄 = 2) → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
25 | 24 | ex 413 | . 2 ⊢ (¬ 𝑃 = 2 → (¬ 𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)))) |
26 | orc 864 | . . 3 ⊢ (𝑃 = 2 → (𝑃 = 2 ∨ 𝑄 = 2)) | |
27 | 26 | a1d 25 | . 2 ⊢ (𝑃 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
28 | olc 865 | . . 3 ⊢ (𝑄 = 2 → (𝑃 = 2 ∨ 𝑄 = 2)) | |
29 | 28 | a1d 25 | . 2 ⊢ (𝑄 = 2 → ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))) |
30 | 25, 27, 29 | pm2.61ii 183 | 1 ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 (class class class)co 7275 + caddc 10874 2c2 12028 ℙcprime 16376 Even ceven 45076 Odd codd 45077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-prm 16377 df-even 45078 df-odd 45079 |
This theorem is referenced by: even3prm2 45171 |
Copyright terms: Public domain | W3C validator |