Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elprchashprn2 | Structured version Visualization version GIF version |
Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
Ref | Expression |
---|---|
elprchashprn2 | ⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 4659 | . 2 ⊢ (¬ 𝑀 ∈ V → {𝑀, 𝑁} = {𝑁}) | |
2 | hashsng 13781 | . . . 4 ⊢ (𝑁 ∈ V → (♯‘{𝑁}) = 1) | |
3 | fveq2 6659 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑀, 𝑁}) = (♯‘{𝑁})) | |
4 | 3 | eqcomd 2765 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑁}) = (♯‘{𝑀, 𝑁})) |
5 | 4 | eqeq1d 2761 | . . . . . . 7 ⊢ ({𝑀, 𝑁} = {𝑁} → ((♯‘{𝑁}) = 1 ↔ (♯‘{𝑀, 𝑁}) = 1)) |
6 | 5 | biimpa 481 | . . . . . 6 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → (♯‘{𝑀, 𝑁}) = 1) |
7 | id 22 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) = 1) | |
8 | 1ne2 11883 | . . . . . . . . 9 ⊢ 1 ≠ 2 | |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → 1 ≠ 2) |
10 | 7, 9 | eqnetrd 3019 | . . . . . . 7 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) ≠ 2) |
11 | 10 | neneqd 2957 | . . . . . 6 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → ¬ (♯‘{𝑀, 𝑁}) = 2) |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
13 | 12 | expcom 418 | . . . 4 ⊢ ((♯‘{𝑁}) = 1 → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
14 | 2, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
15 | snprc 4611 | . . . 4 ⊢ (¬ 𝑁 ∈ V ↔ {𝑁} = ∅) | |
16 | eqeq2 2771 | . . . . . . 7 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} ↔ {𝑀, 𝑁} = ∅)) | |
17 | 16 | biimpa 481 | . . . . . 6 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → {𝑀, 𝑁} = ∅) |
18 | hash0 13779 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
19 | fveq2 6659 | . . . . . . . . . 10 ⊢ ({𝑀, 𝑁} = ∅ → (♯‘{𝑀, 𝑁}) = (♯‘∅)) | |
20 | 19 | eqcomd 2765 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = ∅ → (♯‘∅) = (♯‘{𝑀, 𝑁})) |
21 | 20 | eqeq1d 2761 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = ∅ → ((♯‘∅) = 0 ↔ (♯‘{𝑀, 𝑁}) = 0)) |
22 | 21 | biimpa 481 | . . . . . . 7 ⊢ (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → (♯‘{𝑀, 𝑁}) = 0) |
23 | id 22 | . . . . . . . . 9 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) = 0) | |
24 | 0ne2 11882 | . . . . . . . . . 10 ⊢ 0 ≠ 2 | |
25 | 24 | a1i 11 | . . . . . . . . 9 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → 0 ≠ 2) |
26 | 23, 25 | eqnetrd 3019 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) ≠ 2) |
27 | 26 | neneqd 2957 | . . . . . . 7 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → ¬ (♯‘{𝑀, 𝑁}) = 2) |
28 | 22, 27 | syl 17 | . . . . . 6 ⊢ (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
29 | 17, 18, 28 | sylancl 590 | . . . . 5 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
30 | 29 | ex 417 | . . . 4 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
31 | 15, 30 | sylbi 220 | . . 3 ⊢ (¬ 𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
32 | 14, 31 | pm2.61i 185 | . 2 ⊢ ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2) |
33 | 1, 32 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 Vcvv 3410 ∅c0 4226 {csn 4523 {cpr 4525 ‘cfv 6336 0cc0 10576 1c1 10577 2c2 11730 ♯chash 13741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-n0 11936 df-z 12022 df-uz 12284 df-fz 12941 df-hash 13742 |
This theorem is referenced by: hashprb 13809 |
Copyright terms: Public domain | W3C validator |