| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elprchashprn2 | Structured version Visualization version GIF version | ||
| Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
| Ref | Expression |
|---|---|
| elprchashprn2 | ⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 4746 | . 2 ⊢ (¬ 𝑀 ∈ V → {𝑀, 𝑁} = {𝑁}) | |
| 2 | hashsng 14392 | . . . 4 ⊢ (𝑁 ∈ V → (♯‘{𝑁}) = 1) | |
| 3 | fveq2 6881 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑀, 𝑁}) = (♯‘{𝑁})) | |
| 4 | 3 | eqcomd 2742 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑁}) = (♯‘{𝑀, 𝑁})) |
| 5 | 4 | eqeq1d 2738 | . . . . . . 7 ⊢ ({𝑀, 𝑁} = {𝑁} → ((♯‘{𝑁}) = 1 ↔ (♯‘{𝑀, 𝑁}) = 1)) |
| 6 | 5 | biimpa 476 | . . . . . 6 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → (♯‘{𝑀, 𝑁}) = 1) |
| 7 | id 22 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) = 1) | |
| 8 | 1ne2 12453 | . . . . . . . . 9 ⊢ 1 ≠ 2 | |
| 9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → 1 ≠ 2) |
| 10 | 7, 9 | eqnetrd 3000 | . . . . . . 7 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) ≠ 2) |
| 11 | 10 | neneqd 2938 | . . . . . 6 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → ¬ (♯‘{𝑀, 𝑁}) = 2) |
| 12 | 6, 11 | syl 17 | . . . . 5 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
| 13 | 12 | expcom 413 | . . . 4 ⊢ ((♯‘{𝑁}) = 1 → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
| 14 | 2, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
| 15 | snprc 4698 | . . . 4 ⊢ (¬ 𝑁 ∈ V ↔ {𝑁} = ∅) | |
| 16 | eqeq2 2748 | . . . . . . 7 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} ↔ {𝑀, 𝑁} = ∅)) | |
| 17 | 16 | biimpa 476 | . . . . . 6 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → {𝑀, 𝑁} = ∅) |
| 18 | hash0 14390 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
| 19 | fveq2 6881 | . . . . . . . . . 10 ⊢ ({𝑀, 𝑁} = ∅ → (♯‘{𝑀, 𝑁}) = (♯‘∅)) | |
| 20 | 19 | eqcomd 2742 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = ∅ → (♯‘∅) = (♯‘{𝑀, 𝑁})) |
| 21 | 20 | eqeq1d 2738 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = ∅ → ((♯‘∅) = 0 ↔ (♯‘{𝑀, 𝑁}) = 0)) |
| 22 | 21 | biimpa 476 | . . . . . . 7 ⊢ (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → (♯‘{𝑀, 𝑁}) = 0) |
| 23 | id 22 | . . . . . . . . 9 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) = 0) | |
| 24 | 0ne2 12452 | . . . . . . . . . 10 ⊢ 0 ≠ 2 | |
| 25 | 24 | a1i 11 | . . . . . . . . 9 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → 0 ≠ 2) |
| 26 | 23, 25 | eqnetrd 3000 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) ≠ 2) |
| 27 | 26 | neneqd 2938 | . . . . . . 7 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → ¬ (♯‘{𝑀, 𝑁}) = 2) |
| 28 | 22, 27 | syl 17 | . . . . . 6 ⊢ (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
| 29 | 17, 18, 28 | sylancl 586 | . . . . 5 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
| 30 | 29 | ex 412 | . . . 4 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
| 31 | 15, 30 | sylbi 217 | . . 3 ⊢ (¬ 𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
| 32 | 14, 31 | pm2.61i 182 | . 2 ⊢ ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2) |
| 33 | 1, 32 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∅c0 4313 {csn 4606 {cpr 4608 ‘cfv 6536 0cc0 11134 1c1 11135 2c2 12300 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 |
| This theorem is referenced by: hashprb 14420 |
| Copyright terms: Public domain | W3C validator |