MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elprchashprn2 Structured version   Visualization version   GIF version

Theorem elprchashprn2 14379
Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.)
Assertion
Ref Expression
elprchashprn2 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2)

Proof of Theorem elprchashprn2
StepHypRef Expression
1 prprc1 4765 . 2 𝑀 ∈ V → {𝑀, 𝑁} = {𝑁})
2 hashsng 14352 . . . 4 (𝑁 ∈ V → (♯‘{𝑁}) = 1)
3 fveq2 6891 . . . . . . . . 9 ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑀, 𝑁}) = (♯‘{𝑁}))
43eqcomd 2733 . . . . . . . 8 ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑁}) = (♯‘{𝑀, 𝑁}))
54eqeq1d 2729 . . . . . . 7 ({𝑀, 𝑁} = {𝑁} → ((♯‘{𝑁}) = 1 ↔ (♯‘{𝑀, 𝑁}) = 1))
65biimpa 476 . . . . . 6 (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → (♯‘{𝑀, 𝑁}) = 1)
7 id 22 . . . . . . . 8 ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) = 1)
8 1ne2 12442 . . . . . . . . 9 1 ≠ 2
98a1i 11 . . . . . . . 8 ((♯‘{𝑀, 𝑁}) = 1 → 1 ≠ 2)
107, 9eqnetrd 3003 . . . . . . 7 ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) ≠ 2)
1110neneqd 2940 . . . . . 6 ((♯‘{𝑀, 𝑁}) = 1 → ¬ (♯‘{𝑀, 𝑁}) = 2)
126, 11syl 17 . . . . 5 (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → ¬ (♯‘{𝑀, 𝑁}) = 2)
1312expcom 413 . . . 4 ((♯‘{𝑁}) = 1 → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2))
142, 13syl 17 . . 3 (𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2))
15 snprc 4717 . . . 4 𝑁 ∈ V ↔ {𝑁} = ∅)
16 eqeq2 2739 . . . . . . 7 ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} ↔ {𝑀, 𝑁} = ∅))
1716biimpa 476 . . . . . 6 (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → {𝑀, 𝑁} = ∅)
18 hash0 14350 . . . . . 6 (♯‘∅) = 0
19 fveq2 6891 . . . . . . . . . 10 ({𝑀, 𝑁} = ∅ → (♯‘{𝑀, 𝑁}) = (♯‘∅))
2019eqcomd 2733 . . . . . . . . 9 ({𝑀, 𝑁} = ∅ → (♯‘∅) = (♯‘{𝑀, 𝑁}))
2120eqeq1d 2729 . . . . . . . 8 ({𝑀, 𝑁} = ∅ → ((♯‘∅) = 0 ↔ (♯‘{𝑀, 𝑁}) = 0))
2221biimpa 476 . . . . . . 7 (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → (♯‘{𝑀, 𝑁}) = 0)
23 id 22 . . . . . . . . 9 ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) = 0)
24 0ne2 12441 . . . . . . . . . 10 0 ≠ 2
2524a1i 11 . . . . . . . . 9 ((♯‘{𝑀, 𝑁}) = 0 → 0 ≠ 2)
2623, 25eqnetrd 3003 . . . . . . . 8 ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) ≠ 2)
2726neneqd 2940 . . . . . . 7 ((♯‘{𝑀, 𝑁}) = 0 → ¬ (♯‘{𝑀, 𝑁}) = 2)
2822, 27syl 17 . . . . . 6 (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → ¬ (♯‘{𝑀, 𝑁}) = 2)
2917, 18, 28sylancl 585 . . . . 5 (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → ¬ (♯‘{𝑀, 𝑁}) = 2)
3029ex 412 . . . 4 ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2))
3115, 30sylbi 216 . . 3 𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2))
3214, 31pm2.61i 182 . 2 ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)
331, 32syl 17 1 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  c0 4318  {csn 4624  {cpr 4626  cfv 6542  0cc0 11130  1c1 11131  2c2 12289  chash 14313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-z 12581  df-uz 12845  df-fz 13509  df-hash 14314
This theorem is referenced by:  hashprb  14380
  Copyright terms: Public domain W3C validator