![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elprchashprn2 | Structured version Visualization version GIF version |
Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
Ref | Expression |
---|---|
elprchashprn2 | ⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 4765 | . 2 ⊢ (¬ 𝑀 ∈ V → {𝑀, 𝑁} = {𝑁}) | |
2 | hashsng 14352 | . . . 4 ⊢ (𝑁 ∈ V → (♯‘{𝑁}) = 1) | |
3 | fveq2 6891 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑀, 𝑁}) = (♯‘{𝑁})) | |
4 | 3 | eqcomd 2733 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑁}) = (♯‘{𝑀, 𝑁})) |
5 | 4 | eqeq1d 2729 | . . . . . . 7 ⊢ ({𝑀, 𝑁} = {𝑁} → ((♯‘{𝑁}) = 1 ↔ (♯‘{𝑀, 𝑁}) = 1)) |
6 | 5 | biimpa 476 | . . . . . 6 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → (♯‘{𝑀, 𝑁}) = 1) |
7 | id 22 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) = 1) | |
8 | 1ne2 12442 | . . . . . . . . 9 ⊢ 1 ≠ 2 | |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → 1 ≠ 2) |
10 | 7, 9 | eqnetrd 3003 | . . . . . . 7 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) ≠ 2) |
11 | 10 | neneqd 2940 | . . . . . 6 ⊢ ((♯‘{𝑀, 𝑁}) = 1 → ¬ (♯‘{𝑀, 𝑁}) = 2) |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
13 | 12 | expcom 413 | . . . 4 ⊢ ((♯‘{𝑁}) = 1 → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
14 | 2, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
15 | snprc 4717 | . . . 4 ⊢ (¬ 𝑁 ∈ V ↔ {𝑁} = ∅) | |
16 | eqeq2 2739 | . . . . . . 7 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} ↔ {𝑀, 𝑁} = ∅)) | |
17 | 16 | biimpa 476 | . . . . . 6 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → {𝑀, 𝑁} = ∅) |
18 | hash0 14350 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
19 | fveq2 6891 | . . . . . . . . . 10 ⊢ ({𝑀, 𝑁} = ∅ → (♯‘{𝑀, 𝑁}) = (♯‘∅)) | |
20 | 19 | eqcomd 2733 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = ∅ → (♯‘∅) = (♯‘{𝑀, 𝑁})) |
21 | 20 | eqeq1d 2729 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = ∅ → ((♯‘∅) = 0 ↔ (♯‘{𝑀, 𝑁}) = 0)) |
22 | 21 | biimpa 476 | . . . . . . 7 ⊢ (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → (♯‘{𝑀, 𝑁}) = 0) |
23 | id 22 | . . . . . . . . 9 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) = 0) | |
24 | 0ne2 12441 | . . . . . . . . . 10 ⊢ 0 ≠ 2 | |
25 | 24 | a1i 11 | . . . . . . . . 9 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → 0 ≠ 2) |
26 | 23, 25 | eqnetrd 3003 | . . . . . . . 8 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) ≠ 2) |
27 | 26 | neneqd 2940 | . . . . . . 7 ⊢ ((♯‘{𝑀, 𝑁}) = 0 → ¬ (♯‘{𝑀, 𝑁}) = 2) |
28 | 22, 27 | syl 17 | . . . . . 6 ⊢ (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
29 | 17, 18, 28 | sylancl 585 | . . . . 5 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → ¬ (♯‘{𝑀, 𝑁}) = 2) |
30 | 29 | ex 412 | . . . 4 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
31 | 15, 30 | sylbi 216 | . . 3 ⊢ (¬ 𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)) |
32 | 14, 31 | pm2.61i 182 | . 2 ⊢ ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2) |
33 | 1, 32 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 Vcvv 3469 ∅c0 4318 {csn 4624 {cpr 4626 ‘cfv 6542 0cc0 11130 1c1 11131 2c2 12289 ♯chash 14313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 |
This theorem is referenced by: hashprb 14380 |
Copyright terms: Public domain | W3C validator |