MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elprchashprn2 Structured version   Visualization version   GIF version

Theorem elprchashprn2 14382
Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.)
Assertion
Ref Expression
elprchashprn2 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2)

Proof of Theorem elprchashprn2
StepHypRef Expression
1 prprc1 4766 . 2 𝑀 ∈ V → {𝑀, 𝑁} = {𝑁})
2 hashsng 14355 . . . 4 (𝑁 ∈ V → (♯‘{𝑁}) = 1)
3 fveq2 6890 . . . . . . . . 9 ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑀, 𝑁}) = (♯‘{𝑁}))
43eqcomd 2731 . . . . . . . 8 ({𝑀, 𝑁} = {𝑁} → (♯‘{𝑁}) = (♯‘{𝑀, 𝑁}))
54eqeq1d 2727 . . . . . . 7 ({𝑀, 𝑁} = {𝑁} → ((♯‘{𝑁}) = 1 ↔ (♯‘{𝑀, 𝑁}) = 1))
65biimpa 475 . . . . . 6 (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → (♯‘{𝑀, 𝑁}) = 1)
7 id 22 . . . . . . . 8 ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) = 1)
8 1ne2 12445 . . . . . . . . 9 1 ≠ 2
98a1i 11 . . . . . . . 8 ((♯‘{𝑀, 𝑁}) = 1 → 1 ≠ 2)
107, 9eqnetrd 2998 . . . . . . 7 ((♯‘{𝑀, 𝑁}) = 1 → (♯‘{𝑀, 𝑁}) ≠ 2)
1110neneqd 2935 . . . . . 6 ((♯‘{𝑀, 𝑁}) = 1 → ¬ (♯‘{𝑀, 𝑁}) = 2)
126, 11syl 17 . . . . 5 (({𝑀, 𝑁} = {𝑁} ∧ (♯‘{𝑁}) = 1) → ¬ (♯‘{𝑀, 𝑁}) = 2)
1312expcom 412 . . . 4 ((♯‘{𝑁}) = 1 → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2))
142, 13syl 17 . . 3 (𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2))
15 snprc 4718 . . . 4 𝑁 ∈ V ↔ {𝑁} = ∅)
16 eqeq2 2737 . . . . . . 7 ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} ↔ {𝑀, 𝑁} = ∅))
1716biimpa 475 . . . . . 6 (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → {𝑀, 𝑁} = ∅)
18 hash0 14353 . . . . . 6 (♯‘∅) = 0
19 fveq2 6890 . . . . . . . . . 10 ({𝑀, 𝑁} = ∅ → (♯‘{𝑀, 𝑁}) = (♯‘∅))
2019eqcomd 2731 . . . . . . . . 9 ({𝑀, 𝑁} = ∅ → (♯‘∅) = (♯‘{𝑀, 𝑁}))
2120eqeq1d 2727 . . . . . . . 8 ({𝑀, 𝑁} = ∅ → ((♯‘∅) = 0 ↔ (♯‘{𝑀, 𝑁}) = 0))
2221biimpa 475 . . . . . . 7 (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → (♯‘{𝑀, 𝑁}) = 0)
23 id 22 . . . . . . . . 9 ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) = 0)
24 0ne2 12444 . . . . . . . . . 10 0 ≠ 2
2524a1i 11 . . . . . . . . 9 ((♯‘{𝑀, 𝑁}) = 0 → 0 ≠ 2)
2623, 25eqnetrd 2998 . . . . . . . 8 ((♯‘{𝑀, 𝑁}) = 0 → (♯‘{𝑀, 𝑁}) ≠ 2)
2726neneqd 2935 . . . . . . 7 ((♯‘{𝑀, 𝑁}) = 0 → ¬ (♯‘{𝑀, 𝑁}) = 2)
2822, 27syl 17 . . . . . 6 (({𝑀, 𝑁} = ∅ ∧ (♯‘∅) = 0) → ¬ (♯‘{𝑀, 𝑁}) = 2)
2917, 18, 28sylancl 584 . . . . 5 (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → ¬ (♯‘{𝑀, 𝑁}) = 2)
3029ex 411 . . . 4 ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2))
3115, 30sylbi 216 . . 3 𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2))
3214, 31pm2.61i 182 . 2 ({𝑀, 𝑁} = {𝑁} → ¬ (♯‘{𝑀, 𝑁}) = 2)
331, 32syl 17 1 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  c0 4319  {csn 4625  {cpr 4627  cfv 6543  0cc0 11133  1c1 11134  2c2 12292  chash 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-hash 14317
This theorem is referenced by:  hashprb  14383
  Copyright terms: Public domain W3C validator