MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1to2vfriswmgr Structured version   Visualization version   GIF version

Theorem 1to2vfriswmgr 28544
Description: Every friendship graph with one or two vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1to2vfriswmgr ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝐴,,𝑣,𝑤   𝐵,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)

Proof of Theorem 1to2vfriswmgr
StepHypRef Expression
1 1vwmgr 28541 . . . . 5 ((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
21a1d 25 . . . 4 ((𝐴𝑋𝑉 = {𝐴}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
32expcom 413 . . 3 (𝑉 = {𝐴} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
4 simpr 484 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐴𝑋)
5 simpll 763 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐵 ∈ V)
6 simplr 765 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐴𝐵)
74, 5, 63jca 1126 . . . . . . . . . 10 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → (𝐴𝑋𝐵 ∈ V ∧ 𝐴𝐵))
8 3vfriswmgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
98eqeq1i 2743 . . . . . . . . . . 11 (𝑉 = {𝐴, 𝐵} ↔ (Vtx‘𝐺) = {𝐴, 𝐵})
109biimpi 215 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵})
11 nfrgr2v 28537 . . . . . . . . . 10 (((𝐴𝑋𝐵 ∈ V ∧ 𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )
127, 10, 11syl2anr 596 . . . . . . . . 9 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → 𝐺 ∉ FriendGraph )
13 df-nel 3049 . . . . . . . . 9 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
1412, 13sylib 217 . . . . . . . 8 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → ¬ 𝐺 ∈ FriendGraph )
1514pm2.21d 121 . . . . . . 7 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1615expcom 413 . . . . . 6 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → (𝑉 = {𝐴, 𝐵} → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
1716ex 412 . . . . 5 ((𝐵 ∈ V ∧ 𝐴𝐵) → (𝐴𝑋 → (𝑉 = {𝐴, 𝐵} → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
1817com23 86 . . . 4 ((𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
19 ianor 978 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) ↔ (¬ 𝐵 ∈ V ∨ ¬ 𝐴𝐵))
20 prprc2 4699 . . . . . . . 8 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
21 nne 2946 . . . . . . . . 9 𝐴𝐵𝐴 = 𝐵)
22 preq2 4667 . . . . . . . . . . 11 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
2322eqcoms 2746 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
24 dfsn2 4571 . . . . . . . . . 10 {𝐴} = {𝐴, 𝐴}
2523, 24eqtr4di 2797 . . . . . . . . 9 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2621, 25sylbi 216 . . . . . . . 8 𝐴𝐵 → {𝐴, 𝐵} = {𝐴})
2720, 26jaoi 853 . . . . . . 7 ((¬ 𝐵 ∈ V ∨ ¬ 𝐴𝐵) → {𝐴, 𝐵} = {𝐴})
2819, 27sylbi 216 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → {𝐴, 𝐵} = {𝐴})
2928eqeq2d 2749 . . . . 5 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} ↔ 𝑉 = {𝐴}))
3029, 3syl6bi 252 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
3118, 30pm2.61i 182 . . 3 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
323, 31jaoi 853 . 2 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
3332impcom 407 1 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wral 3063  wrex 3064  ∃!wreu 3065  Vcvv 3422  cdif 3880  {csn 4558  {cpr 4560  cfv 6418  Vtxcvtx 27269  Edgcedg 27320   FriendGraph cfrgr 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-umgr 27356  df-usgr 27424  df-frgr 28524
This theorem is referenced by:  1to3vfriswmgr  28545
  Copyright terms: Public domain W3C validator