MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1to2vfriswmgr Structured version   Visualization version   GIF version

Theorem 1to2vfriswmgr 28218
Description: Every friendship graph with one or two vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
1to2vfriswmgr ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝐴,,𝑣,𝑤   𝐵,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)

Proof of Theorem 1to2vfriswmgr
StepHypRef Expression
1 1vwmgr 28215 . . . . 5 ((𝐴𝑋𝑉 = {𝐴}) → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))
21a1d 25 . . . 4 ((𝐴𝑋𝑉 = {𝐴}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
32expcom 417 . . 3 (𝑉 = {𝐴} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
4 simpr 488 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐴𝑋)
5 simpll 767 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐵 ∈ V)
6 simplr 769 . . . . . . . . . . 11 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → 𝐴𝐵)
74, 5, 63jca 1129 . . . . . . . . . 10 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → (𝐴𝑋𝐵 ∈ V ∧ 𝐴𝐵))
8 3vfriswmgr.v . . . . . . . . . . . 12 𝑉 = (Vtx‘𝐺)
98eqeq1i 2743 . . . . . . . . . . 11 (𝑉 = {𝐴, 𝐵} ↔ (Vtx‘𝐺) = {𝐴, 𝐵})
109biimpi 219 . . . . . . . . . 10 (𝑉 = {𝐴, 𝐵} → (Vtx‘𝐺) = {𝐴, 𝐵})
11 nfrgr2v 28211 . . . . . . . . . 10 (((𝐴𝑋𝐵 ∈ V ∧ 𝐴𝐵) ∧ (Vtx‘𝐺) = {𝐴, 𝐵}) → 𝐺 ∉ FriendGraph )
127, 10, 11syl2anr 600 . . . . . . . . 9 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → 𝐺 ∉ FriendGraph )
13 df-nel 3039 . . . . . . . . 9 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
1412, 13sylib 221 . . . . . . . 8 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → ¬ 𝐺 ∈ FriendGraph )
1514pm2.21d 121 . . . . . . 7 ((𝑉 = {𝐴, 𝐵} ∧ ((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋)) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1615expcom 417 . . . . . 6 (((𝐵 ∈ V ∧ 𝐴𝐵) ∧ 𝐴𝑋) → (𝑉 = {𝐴, 𝐵} → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
1716ex 416 . . . . 5 ((𝐵 ∈ V ∧ 𝐴𝐵) → (𝐴𝑋 → (𝑉 = {𝐴, 𝐵} → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
1817com23 86 . . . 4 ((𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
19 ianor 981 . . . . . . 7 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) ↔ (¬ 𝐵 ∈ V ∨ ¬ 𝐴𝐵))
20 prprc2 4657 . . . . . . . 8 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
21 nne 2938 . . . . . . . . 9 𝐴𝐵𝐴 = 𝐵)
22 preq2 4625 . . . . . . . . . . 11 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
2322eqcoms 2746 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
24 dfsn2 4529 . . . . . . . . . 10 {𝐴} = {𝐴, 𝐴}
2523, 24eqtr4di 2791 . . . . . . . . 9 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
2621, 25sylbi 220 . . . . . . . 8 𝐴𝐵 → {𝐴, 𝐵} = {𝐴})
2720, 26jaoi 856 . . . . . . 7 ((¬ 𝐵 ∈ V ∨ ¬ 𝐴𝐵) → {𝐴, 𝐵} = {𝐴})
2819, 27sylbi 220 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → {𝐴, 𝐵} = {𝐴})
2928eqeq2d 2749 . . . . 5 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} ↔ 𝑉 = {𝐴}))
3029, 3syl6bi 256 . . . 4 (¬ (𝐵 ∈ V ∧ 𝐴𝐵) → (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))))
3118, 30pm2.61i 185 . . 3 (𝑉 = {𝐴, 𝐵} → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
323, 31jaoi 856 . 2 ((𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵}) → (𝐴𝑋 → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
3332impcom 411 1 ((𝐴𝑋 ∧ (𝑉 = {𝐴} ∨ 𝑉 = {𝐴, 𝐵})) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wnel 3038  wral 3053  wrex 3054  ∃!wreu 3055  Vcvv 3398  cdif 3840  {csn 4516  {cpr 4518  cfv 6339  Vtxcvtx 26943  Edgcedg 26994   FriendGraph cfrgr 28197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-oadd 8137  df-er 8322  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-dju 9405  df-card 9443  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-2 11781  df-n0 11979  df-z 12065  df-uz 12327  df-fz 12984  df-hash 13785  df-edg 26995  df-umgr 27030  df-usgr 27098  df-frgr 28198
This theorem is referenced by:  1to3vfriswmgr  28219
  Copyright terms: Public domain W3C validator