MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indislem Structured version   Visualization version   GIF version

Theorem indislem 22150
Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indislem {∅, ( I ‘𝐴)} = {∅, 𝐴}

Proof of Theorem indislem
StepHypRef Expression
1 fvi 6844 . . 3 (𝐴 ∈ V → ( I ‘𝐴) = 𝐴)
21preq2d 4676 . 2 (𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴})
3 dfsn2 4574 . . . 4 {∅} = {∅, ∅}
43eqcomi 2747 . . 3 {∅, ∅} = {∅}
5 fvprc 6766 . . . 4 𝐴 ∈ V → ( I ‘𝐴) = ∅)
65preq2d 4676 . . 3 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, ∅})
7 prprc2 4702 . . 3 𝐴 ∈ V → {∅, 𝐴} = {∅})
84, 6, 73eqtr4a 2804 . 2 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴})
92, 8pm2.61i 182 1 {∅, ( I ‘𝐴)} = {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  {csn 4561  {cpr 4563   I cid 5488  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  indistop  22152  indisuni  22153  indiscld  22242  indisconn  22569  txindis  22785  hmphindis  22948
  Copyright terms: Public domain W3C validator