MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indislem Structured version   Visualization version   GIF version

Theorem indislem 22894
Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indislem {∅, ( I ‘𝐴)} = {∅, 𝐴}

Proof of Theorem indislem
StepHypRef Expression
1 fvi 6940 . . 3 (𝐴 ∈ V → ( I ‘𝐴) = 𝐴)
21preq2d 4707 . 2 (𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴})
3 dfsn2 4605 . . . 4 {∅} = {∅, ∅}
43eqcomi 2739 . . 3 {∅, ∅} = {∅}
5 fvprc 6853 . . . 4 𝐴 ∈ V → ( I ‘𝐴) = ∅)
65preq2d 4707 . . 3 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, ∅})
7 prprc2 4733 . . 3 𝐴 ∈ V → {∅, 𝐴} = {∅})
84, 6, 73eqtr4a 2791 . 2 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴})
92, 8pm2.61i 182 1 {∅, ( I ‘𝐴)} = {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  {cpr 4594   I cid 5535  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  indistop  22896  indisuni  22897  indiscld  22985  indisconn  23312  txindis  23528  hmphindis  23691
  Copyright terms: Public domain W3C validator