Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indislem | Structured version Visualization version GIF version |
Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indislem | ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi 6826 | . . 3 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
2 | 1 | preq2d 4673 | . 2 ⊢ (𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴}) |
3 | dfsn2 4571 | . . . 4 ⊢ {∅} = {∅, ∅} | |
4 | 3 | eqcomi 2747 | . . 3 ⊢ {∅, ∅} = {∅} |
5 | fvprc 6748 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
6 | 5 | preq2d 4673 | . . 3 ⊢ (¬ 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, ∅}) |
7 | prprc2 4699 | . . 3 ⊢ (¬ 𝐴 ∈ V → {∅, 𝐴} = {∅}) | |
8 | 4, 6, 7 | 3eqtr4a 2805 | . 2 ⊢ (¬ 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴}) |
9 | 2, 8 | pm2.61i 182 | 1 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 {cpr 4560 I cid 5479 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: indistop 22060 indisuni 22061 indiscld 22150 indisconn 22477 txindis 22693 hmphindis 22856 |
Copyright terms: Public domain | W3C validator |