MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indislem Structured version   Visualization version   GIF version

Theorem indislem 22903
Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indislem {∅, ( I ‘𝐴)} = {∅, 𝐴}

Proof of Theorem indislem
StepHypRef Expression
1 fvi 6903 . . 3 (𝐴 ∈ V → ( I ‘𝐴) = 𝐴)
21preq2d 4694 . 2 (𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴})
3 dfsn2 4592 . . . 4 {∅} = {∅, ∅}
43eqcomi 2738 . . 3 {∅, ∅} = {∅}
5 fvprc 6818 . . . 4 𝐴 ∈ V → ( I ‘𝐴) = ∅)
65preq2d 4694 . . 3 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, ∅})
7 prprc2 4720 . . 3 𝐴 ∈ V → {∅, 𝐴} = {∅})
84, 6, 73eqtr4a 2790 . 2 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴})
92, 8pm2.61i 182 1 {∅, ( I ‘𝐴)} = {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  {csn 4579  {cpr 4581   I cid 5517  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  indistop  22905  indisuni  22906  indiscld  22994  indisconn  23321  txindis  23537  hmphindis  23700
  Copyright terms: Public domain W3C validator