MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indislem Structured version   Visualization version   GIF version

Theorem indislem 22910
Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indislem {∅, ( I ‘𝐴)} = {∅, 𝐴}

Proof of Theorem indislem
StepHypRef Expression
1 fvi 6893 . . 3 (𝐴 ∈ V → ( I ‘𝐴) = 𝐴)
21preq2d 4688 . 2 (𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴})
3 dfsn2 4584 . . . 4 {∅} = {∅, ∅}
43eqcomi 2740 . . 3 {∅, ∅} = {∅}
5 fvprc 6809 . . . 4 𝐴 ∈ V → ( I ‘𝐴) = ∅)
65preq2d 4688 . . 3 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, ∅})
7 prprc2 4714 . . 3 𝐴 ∈ V → {∅, 𝐴} = {∅})
84, 6, 73eqtr4a 2792 . 2 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴})
92, 8pm2.61i 182 1 {∅, ( I ‘𝐴)} = {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4278  {csn 4571  {cpr 4573   I cid 5505  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484
This theorem is referenced by:  indistop  22912  indisuni  22913  indiscld  23001  indisconn  23328  txindis  23544  hmphindis  23707
  Copyright terms: Public domain W3C validator