![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indislem | Structured version Visualization version GIF version |
Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indislem | ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi 6998 | . . 3 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
2 | 1 | preq2d 4765 | . 2 ⊢ (𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴}) |
3 | dfsn2 4661 | . . . 4 ⊢ {∅} = {∅, ∅} | |
4 | 3 | eqcomi 2749 | . . 3 ⊢ {∅, ∅} = {∅} |
5 | fvprc 6912 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
6 | 5 | preq2d 4765 | . . 3 ⊢ (¬ 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, ∅}) |
7 | prprc2 4791 | . . 3 ⊢ (¬ 𝐴 ∈ V → {∅, 𝐴} = {∅}) | |
8 | 4, 6, 7 | 3eqtr4a 2806 | . 2 ⊢ (¬ 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴}) |
9 | 2, 8 | pm2.61i 182 | 1 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 {cpr 4650 I cid 5592 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: indistop 23030 indisuni 23031 indiscld 23120 indisconn 23447 txindis 23663 hmphindis 23826 |
Copyright terms: Public domain | W3C validator |