Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indislem | Structured version Visualization version GIF version |
Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
indislem | ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi 6844 | . . 3 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
2 | 1 | preq2d 4676 | . 2 ⊢ (𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴}) |
3 | dfsn2 4574 | . . . 4 ⊢ {∅} = {∅, ∅} | |
4 | 3 | eqcomi 2747 | . . 3 ⊢ {∅, ∅} = {∅} |
5 | fvprc 6766 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
6 | 5 | preq2d 4676 | . . 3 ⊢ (¬ 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, ∅}) |
7 | prprc2 4702 | . . 3 ⊢ (¬ 𝐴 ∈ V → {∅, 𝐴} = {∅}) | |
8 | 4, 6, 7 | 3eqtr4a 2804 | . 2 ⊢ (¬ 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴}) |
9 | 2, 8 | pm2.61i 182 | 1 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 {cpr 4563 I cid 5488 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: indistop 22152 indisuni 22153 indiscld 22242 indisconn 22569 txindis 22785 hmphindis 22948 |
Copyright terms: Public domain | W3C validator |