| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indislem | Structured version Visualization version GIF version | ||
| Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| indislem | ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi 6960 | . . 3 ⊢ (𝐴 ∈ V → ( I ‘𝐴) = 𝐴) | |
| 2 | 1 | preq2d 4721 | . 2 ⊢ (𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴}) |
| 3 | dfsn2 4619 | . . . 4 ⊢ {∅} = {∅, ∅} | |
| 4 | 3 | eqcomi 2745 | . . 3 ⊢ {∅, ∅} = {∅} |
| 5 | fvprc 6873 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
| 6 | 5 | preq2d 4721 | . . 3 ⊢ (¬ 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, ∅}) |
| 7 | prprc2 4747 | . . 3 ⊢ (¬ 𝐴 ∈ V → {∅, 𝐴} = {∅}) | |
| 8 | 4, 6, 7 | 3eqtr4a 2797 | . 2 ⊢ (¬ 𝐴 ∈ V → {∅, ( I ‘𝐴)} = {∅, 𝐴}) |
| 9 | 2, 8 | pm2.61i 182 | 1 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {csn 4606 {cpr 4608 I cid 5552 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: indistop 22945 indisuni 22946 indiscld 23034 indisconn 23361 txindis 23577 hmphindis 23740 |
| Copyright terms: Public domain | W3C validator |