Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indispconn Structured version   Visualization version   GIF version

Theorem indispconn 35228
Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indispconn {∅, 𝐴} ∈ PConn

Proof of Theorem indispconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indistop 22896 . 2 {∅, 𝐴} ∈ Top
2 simpl 482 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥 {∅, 𝐴})
3 0ex 5265 . . . . . . . . . . . 12 ∅ ∈ V
4 n0i 4306 . . . . . . . . . . . . . 14 (𝑥 {∅, 𝐴} → ¬ {∅, 𝐴} = ∅)
5 prprc2 4733 . . . . . . . . . . . . . . . 16 𝐴 ∈ V → {∅, 𝐴} = {∅})
65unieqd 4887 . . . . . . . . . . . . . . 15 𝐴 ∈ V → {∅, 𝐴} = {∅})
73unisn 4893 . . . . . . . . . . . . . . 15 {∅} = ∅
86, 7eqtrdi 2781 . . . . . . . . . . . . . 14 𝐴 ∈ V → {∅, 𝐴} = ∅)
94, 8nsyl2 141 . . . . . . . . . . . . 13 (𝑥 {∅, 𝐴} → 𝐴 ∈ V)
109adantr 480 . . . . . . . . . . . 12 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝐴 ∈ V)
11 uniprg 4890 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝐴 ∈ V) → {∅, 𝐴} = (∅ ∪ 𝐴))
123, 10, 11sylancr 587 . . . . . . . . . . 11 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = (∅ ∪ 𝐴))
13 uncom 4124 . . . . . . . . . . . 12 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
14 un0 4360 . . . . . . . . . . . 12 (𝐴 ∪ ∅) = 𝐴
1513, 14eqtri 2753 . . . . . . . . . . 11 (∅ ∪ 𝐴) = 𝐴
1612, 15eqtrdi 2781 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = 𝐴)
172, 16eleqtrd 2831 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥𝐴)
18 simpr 484 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦 {∅, 𝐴})
1918, 16eleqtrd 2831 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦𝐴)
2017, 19ifcld 4538 . . . . . . . 8 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2120adantr 480 . . . . . . 7 (((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) ∧ 𝑧 ∈ (0[,]1)) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2221fmpttd 7090 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴)
23 ovex 7423 . . . . . . 7 (0[,]1) ∈ V
24 elmapg 8815 . . . . . . 7 ((𝐴 ∈ V ∧ (0[,]1) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2510, 23, 24sylancl 586 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2622, 25mpbird 257 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)))
27 iitopon 24779 . . . . . 6 II ∈ (TopOn‘(0[,]1))
28 cnindis 23186 . . . . . 6 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐴 ∈ V) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
2927, 10, 28sylancr 587 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
3026, 29eleqtrrd 2832 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}))
31 0elunit 13437 . . . . 5 0 ∈ (0[,]1)
32 iftrue 4497 . . . . . 6 (𝑧 = 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑥)
33 eqid 2730 . . . . . 6 (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))
34 vex 3454 . . . . . 6 𝑥 ∈ V
3532, 33, 34fvmpt 6971 . . . . 5 (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
3631, 35mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
37 1elunit 13438 . . . . 5 1 ∈ (0[,]1)
38 ax-1ne0 11144 . . . . . . . 8 1 ≠ 0
39 neeq1 2988 . . . . . . . 8 (𝑧 = 1 → (𝑧 ≠ 0 ↔ 1 ≠ 0))
4038, 39mpbiri 258 . . . . . . 7 (𝑧 = 1 → 𝑧 ≠ 0)
41 ifnefalse 4503 . . . . . . 7 (𝑧 ≠ 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
4240, 41syl 17 . . . . . 6 (𝑧 = 1 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
43 vex 3454 . . . . . 6 𝑦 ∈ V
4442, 33, 43fvmpt 6971 . . . . 5 (1 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
4537, 44mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
46 fveq1 6860 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0))
4746eqeq1d 2732 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥))
48 fveq1 6860 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1))
4948eqeq1d 2732 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦))
5047, 49anbi12d 632 . . . . 5 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)))
5150rspcev 3591 . . . 4 (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}) ∧ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5230, 36, 45, 51syl12anc 836 . . 3 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5352rgen2 3178 . 2 𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)
54 eqid 2730 . . 3 {∅, 𝐴} = {∅, 𝐴}
5554ispconn 35217 . 2 ({∅, 𝐴} ∈ PConn ↔ ({∅, 𝐴} ∈ Top ∧ ∀𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
561, 53, 55mpbir2an 711 1 {∅, 𝐴} ∈ PConn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cun 3915  c0 4299  ifcif 4491  {csn 4592  {cpr 4594   cuni 4874  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076  [,]cicc 13316  Topctop 22787  TopOnctopon 22804   Cn ccn 23118  IIcii 24775  PConncpconn 35213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cn 23121  df-ii 24777  df-pconn 35215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator