Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indispconn Structured version   Visualization version   GIF version

Theorem indispconn 35276
Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indispconn {∅, 𝐴} ∈ PConn

Proof of Theorem indispconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indistop 22918 . 2 {∅, 𝐴} ∈ Top
2 simpl 482 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥 {∅, 𝐴})
3 0ex 5245 . . . . . . . . . . . 12 ∅ ∈ V
4 n0i 4290 . . . . . . . . . . . . . 14 (𝑥 {∅, 𝐴} → ¬ {∅, 𝐴} = ∅)
5 prprc2 4719 . . . . . . . . . . . . . . . 16 𝐴 ∈ V → {∅, 𝐴} = {∅})
65unieqd 4872 . . . . . . . . . . . . . . 15 𝐴 ∈ V → {∅, 𝐴} = {∅})
73unisn 4878 . . . . . . . . . . . . . . 15 {∅} = ∅
86, 7eqtrdi 2782 . . . . . . . . . . . . . 14 𝐴 ∈ V → {∅, 𝐴} = ∅)
94, 8nsyl2 141 . . . . . . . . . . . . 13 (𝑥 {∅, 𝐴} → 𝐴 ∈ V)
109adantr 480 . . . . . . . . . . . 12 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝐴 ∈ V)
11 uniprg 4875 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝐴 ∈ V) → {∅, 𝐴} = (∅ ∪ 𝐴))
123, 10, 11sylancr 587 . . . . . . . . . . 11 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = (∅ ∪ 𝐴))
13 uncom 4108 . . . . . . . . . . . 12 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
14 un0 4344 . . . . . . . . . . . 12 (𝐴 ∪ ∅) = 𝐴
1513, 14eqtri 2754 . . . . . . . . . . 11 (∅ ∪ 𝐴) = 𝐴
1612, 15eqtrdi 2782 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = 𝐴)
172, 16eleqtrd 2833 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥𝐴)
18 simpr 484 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦 {∅, 𝐴})
1918, 16eleqtrd 2833 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦𝐴)
2017, 19ifcld 4522 . . . . . . . 8 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2120adantr 480 . . . . . . 7 (((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) ∧ 𝑧 ∈ (0[,]1)) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2221fmpttd 7048 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴)
23 ovex 7379 . . . . . . 7 (0[,]1) ∈ V
24 elmapg 8763 . . . . . . 7 ((𝐴 ∈ V ∧ (0[,]1) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2510, 23, 24sylancl 586 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2622, 25mpbird 257 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)))
27 iitopon 24800 . . . . . 6 II ∈ (TopOn‘(0[,]1))
28 cnindis 23208 . . . . . 6 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐴 ∈ V) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
2927, 10, 28sylancr 587 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
3026, 29eleqtrrd 2834 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}))
31 0elunit 13369 . . . . 5 0 ∈ (0[,]1)
32 iftrue 4481 . . . . . 6 (𝑧 = 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑥)
33 eqid 2731 . . . . . 6 (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))
34 vex 3440 . . . . . 6 𝑥 ∈ V
3532, 33, 34fvmpt 6929 . . . . 5 (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
3631, 35mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
37 1elunit 13370 . . . . 5 1 ∈ (0[,]1)
38 ax-1ne0 11075 . . . . . . . 8 1 ≠ 0
39 neeq1 2990 . . . . . . . 8 (𝑧 = 1 → (𝑧 ≠ 0 ↔ 1 ≠ 0))
4038, 39mpbiri 258 . . . . . . 7 (𝑧 = 1 → 𝑧 ≠ 0)
41 ifnefalse 4487 . . . . . . 7 (𝑧 ≠ 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
4240, 41syl 17 . . . . . 6 (𝑧 = 1 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
43 vex 3440 . . . . . 6 𝑦 ∈ V
4442, 33, 43fvmpt 6929 . . . . 5 (1 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
4537, 44mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
46 fveq1 6821 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0))
4746eqeq1d 2733 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥))
48 fveq1 6821 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1))
4948eqeq1d 2733 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦))
5047, 49anbi12d 632 . . . . 5 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)))
5150rspcev 3577 . . . 4 (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}) ∧ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5230, 36, 45, 51syl12anc 836 . . 3 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5352rgen2 3172 . 2 𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)
54 eqid 2731 . . 3 {∅, 𝐴} = {∅, 𝐴}
5554ispconn 35265 . 2 ({∅, 𝐴} ∈ PConn ↔ ({∅, 𝐴} ∈ Top ∧ ∀𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
561, 53, 55mpbir2an 711 1 {∅, 𝐴} ∈ PConn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cun 3900  c0 4283  ifcif 4475  {csn 4576  {cpr 4578   cuni 4859  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  0cc0 11006  1c1 11007  [,]cicc 13248  Topctop 22809  TopOnctopon 22826   Cn ccn 23140  IIcii 24796  PConncpconn 35261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-topgen 17347  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-top 22810  df-topon 22827  df-bases 22862  df-cn 23143  df-ii 24798  df-pconn 35263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator