Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indispconn Structured version   Visualization version   GIF version

Theorem indispconn 35221
Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indispconn {∅, 𝐴} ∈ PConn

Proof of Theorem indispconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indistop 22889 . 2 {∅, 𝐴} ∈ Top
2 simpl 482 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥 {∅, 𝐴})
3 0ex 5262 . . . . . . . . . . . 12 ∅ ∈ V
4 n0i 4303 . . . . . . . . . . . . . 14 (𝑥 {∅, 𝐴} → ¬ {∅, 𝐴} = ∅)
5 prprc2 4730 . . . . . . . . . . . . . . . 16 𝐴 ∈ V → {∅, 𝐴} = {∅})
65unieqd 4884 . . . . . . . . . . . . . . 15 𝐴 ∈ V → {∅, 𝐴} = {∅})
73unisn 4890 . . . . . . . . . . . . . . 15 {∅} = ∅
86, 7eqtrdi 2780 . . . . . . . . . . . . . 14 𝐴 ∈ V → {∅, 𝐴} = ∅)
94, 8nsyl2 141 . . . . . . . . . . . . 13 (𝑥 {∅, 𝐴} → 𝐴 ∈ V)
109adantr 480 . . . . . . . . . . . 12 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝐴 ∈ V)
11 uniprg 4887 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝐴 ∈ V) → {∅, 𝐴} = (∅ ∪ 𝐴))
123, 10, 11sylancr 587 . . . . . . . . . . 11 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = (∅ ∪ 𝐴))
13 uncom 4121 . . . . . . . . . . . 12 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
14 un0 4357 . . . . . . . . . . . 12 (𝐴 ∪ ∅) = 𝐴
1513, 14eqtri 2752 . . . . . . . . . . 11 (∅ ∪ 𝐴) = 𝐴
1612, 15eqtrdi 2780 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = 𝐴)
172, 16eleqtrd 2830 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥𝐴)
18 simpr 484 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦 {∅, 𝐴})
1918, 16eleqtrd 2830 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦𝐴)
2017, 19ifcld 4535 . . . . . . . 8 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2120adantr 480 . . . . . . 7 (((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) ∧ 𝑧 ∈ (0[,]1)) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2221fmpttd 7087 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴)
23 ovex 7420 . . . . . . 7 (0[,]1) ∈ V
24 elmapg 8812 . . . . . . 7 ((𝐴 ∈ V ∧ (0[,]1) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2510, 23, 24sylancl 586 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2622, 25mpbird 257 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)))
27 iitopon 24772 . . . . . 6 II ∈ (TopOn‘(0[,]1))
28 cnindis 23179 . . . . . 6 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐴 ∈ V) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
2927, 10, 28sylancr 587 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
3026, 29eleqtrrd 2831 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}))
31 0elunit 13430 . . . . 5 0 ∈ (0[,]1)
32 iftrue 4494 . . . . . 6 (𝑧 = 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑥)
33 eqid 2729 . . . . . 6 (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))
34 vex 3451 . . . . . 6 𝑥 ∈ V
3532, 33, 34fvmpt 6968 . . . . 5 (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
3631, 35mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
37 1elunit 13431 . . . . 5 1 ∈ (0[,]1)
38 ax-1ne0 11137 . . . . . . . 8 1 ≠ 0
39 neeq1 2987 . . . . . . . 8 (𝑧 = 1 → (𝑧 ≠ 0 ↔ 1 ≠ 0))
4038, 39mpbiri 258 . . . . . . 7 (𝑧 = 1 → 𝑧 ≠ 0)
41 ifnefalse 4500 . . . . . . 7 (𝑧 ≠ 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
4240, 41syl 17 . . . . . 6 (𝑧 = 1 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
43 vex 3451 . . . . . 6 𝑦 ∈ V
4442, 33, 43fvmpt 6968 . . . . 5 (1 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
4537, 44mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
46 fveq1 6857 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0))
4746eqeq1d 2731 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥))
48 fveq1 6857 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1))
4948eqeq1d 2731 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦))
5047, 49anbi12d 632 . . . . 5 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)))
5150rspcev 3588 . . . 4 (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}) ∧ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5230, 36, 45, 51syl12anc 836 . . 3 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5352rgen2 3177 . 2 𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)
54 eqid 2729 . . 3 {∅, 𝐴} = {∅, 𝐴}
5554ispconn 35210 . 2 ({∅, 𝐴} ∈ PConn ↔ ({∅, 𝐴} ∈ Top ∧ ∀𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
561, 53, 55mpbir2an 711 1 {∅, 𝐴} ∈ PConn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cun 3912  c0 4296  ifcif 4488  {csn 4589  {cpr 4591   cuni 4871  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  1c1 11069  [,]cicc 13309  Topctop 22780  TopOnctopon 22797   Cn ccn 23111  IIcii 24768  PConncpconn 35206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-ii 24770  df-pconn 35208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator