Step | Hyp | Ref
| Expression |
1 | | indistop 22496 |
. 2
β’ {β
,
π΄} β
Top |
2 | | simpl 483 |
. . . . . . . . . 10
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β π₯ β βͺ {β
, π΄}) |
3 | | 0ex 5306 |
. . . . . . . . . . . 12
β’ β
β V |
4 | | n0i 4332 |
. . . . . . . . . . . . . 14
β’ (π₯ β βͺ {β
, π΄} β Β¬ βͺ
{β
, π΄} =
β
) |
5 | | prprc2 4769 |
. . . . . . . . . . . . . . . 16
β’ (Β¬
π΄ β V β {β
,
π΄} =
{β
}) |
6 | 5 | unieqd 4921 |
. . . . . . . . . . . . . . 15
β’ (Β¬
π΄ β V β βͺ {β
, π΄} = βͺ
{β
}) |
7 | 3 | unisn 4929 |
. . . . . . . . . . . . . . 15
β’ βͺ {β
} = β
|
8 | 6, 7 | eqtrdi 2788 |
. . . . . . . . . . . . . 14
β’ (Β¬
π΄ β V β βͺ {β
, π΄} = β
) |
9 | 4, 8 | nsyl2 141 |
. . . . . . . . . . . . 13
β’ (π₯ β βͺ {β
, π΄} β π΄ β V) |
10 | 9 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β π΄ β V) |
11 | | uniprg 4924 |
. . . . . . . . . . . 12
β’ ((β
β V β§ π΄ β V)
β βͺ {β
, π΄} = (β
βͺ π΄)) |
12 | 3, 10, 11 | sylancr 587 |
. . . . . . . . . . 11
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β βͺ {β
, π΄} = (β
βͺ π΄)) |
13 | | uncom 4152 |
. . . . . . . . . . . 12
β’ (β
βͺ π΄) = (π΄ βͺ β
) |
14 | | un0 4389 |
. . . . . . . . . . . 12
β’ (π΄ βͺ β
) = π΄ |
15 | 13, 14 | eqtri 2760 |
. . . . . . . . . . 11
β’ (β
βͺ π΄) = π΄ |
16 | 12, 15 | eqtrdi 2788 |
. . . . . . . . . 10
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β βͺ {β
, π΄} = π΄) |
17 | 2, 16 | eleqtrd 2835 |
. . . . . . . . 9
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β π₯ β π΄) |
18 | | simpr 485 |
. . . . . . . . . 10
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β π¦ β βͺ {β
, π΄}) |
19 | 18, 16 | eleqtrd 2835 |
. . . . . . . . 9
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β π¦ β π΄) |
20 | 17, 19 | ifcld 4573 |
. . . . . . . 8
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β
if(π§ = 0, π₯, π¦) β π΄) |
21 | 20 | adantr 481 |
. . . . . . 7
β’ (((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β§ π§ β (0[,]1)) β if(π§ = 0, π₯, π¦) β π΄) |
22 | 21 | fmpttd 7111 |
. . . . . 6
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)):(0[,]1)βΆπ΄) |
23 | | ovex 7438 |
. . . . . . 7
β’ (0[,]1)
β V |
24 | | elmapg 8829 |
. . . . . . 7
β’ ((π΄ β V β§ (0[,]1) β
V) β ((π§ β
(0[,]1) β¦ if(π§ = 0,
π₯, π¦)) β (π΄ βm (0[,]1)) β (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)):(0[,]1)βΆπ΄)) |
25 | 10, 23, 24 | sylancl 586 |
. . . . . 6
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β
((π§ β (0[,]1) β¦
if(π§ = 0, π₯, π¦)) β (π΄ βm (0[,]1)) β (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)):(0[,]1)βΆπ΄)) |
26 | 22, 25 | mpbird 256 |
. . . . 5
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) β (π΄ βm
(0[,]1))) |
27 | | iitopon 24386 |
. . . . . 6
β’ II β
(TopOnβ(0[,]1)) |
28 | | cnindis 22787 |
. . . . . 6
β’ ((II
β (TopOnβ(0[,]1)) β§ π΄ β V) β (II Cn {β
, π΄}) = (π΄ βm
(0[,]1))) |
29 | 27, 10, 28 | sylancr 587 |
. . . . 5
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β (II Cn
{β
, π΄}) = (π΄ βm
(0[,]1))) |
30 | 26, 29 | eleqtrrd 2836 |
. . . 4
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) β (II Cn {β
, π΄})) |
31 | | 0elunit 13442 |
. . . . 5
β’ 0 β
(0[,]1) |
32 | | iftrue 4533 |
. . . . . 6
β’ (π§ = 0 β if(π§ = 0, π₯, π¦) = π₯) |
33 | | eqid 2732 |
. . . . . 6
β’ (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) = (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) |
34 | | vex 3478 |
. . . . . 6
β’ π₯ β V |
35 | 32, 33, 34 | fvmpt 6995 |
. . . . 5
β’ (0 β
(0[,]1) β ((π§ β
(0[,]1) β¦ if(π§ = 0,
π₯, π¦))β0) = π₯) |
36 | 31, 35 | mp1i 13 |
. . . 4
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β
((π§ β (0[,]1) β¦
if(π§ = 0, π₯, π¦))β0) = π₯) |
37 | | 1elunit 13443 |
. . . . 5
β’ 1 β
(0[,]1) |
38 | | ax-1ne0 11175 |
. . . . . . . 8
β’ 1 β
0 |
39 | | neeq1 3003 |
. . . . . . . 8
β’ (π§ = 1 β (π§ β 0 β 1 β 0)) |
40 | 38, 39 | mpbiri 257 |
. . . . . . 7
β’ (π§ = 1 β π§ β 0) |
41 | | ifnefalse 4539 |
. . . . . . 7
β’ (π§ β 0 β if(π§ = 0, π₯, π¦) = π¦) |
42 | 40, 41 | syl 17 |
. . . . . 6
β’ (π§ = 1 β if(π§ = 0, π₯, π¦) = π¦) |
43 | | vex 3478 |
. . . . . 6
β’ π¦ β V |
44 | 42, 33, 43 | fvmpt 6995 |
. . . . 5
β’ (1 β
(0[,]1) β ((π§ β
(0[,]1) β¦ if(π§ = 0,
π₯, π¦))β1) = π¦) |
45 | 37, 44 | mp1i 13 |
. . . 4
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β
((π§ β (0[,]1) β¦
if(π§ = 0, π₯, π¦))β1) = π¦) |
46 | | fveq1 6887 |
. . . . . . 7
β’ (π = (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) β (πβ0) = ((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦))β0)) |
47 | 46 | eqeq1d 2734 |
. . . . . 6
β’ (π = (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) β ((πβ0) = π₯ β ((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦))β0) = π₯)) |
48 | | fveq1 6887 |
. . . . . . 7
β’ (π = (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) β (πβ1) = ((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦))β1)) |
49 | 48 | eqeq1d 2734 |
. . . . . 6
β’ (π = (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) β ((πβ1) = π¦ β ((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦))β1) = π¦)) |
50 | 47, 49 | anbi12d 631 |
. . . . 5
β’ (π = (π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) β (((πβ0) = π₯ β§ (πβ1) = π¦) β (((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦))β0) = π₯ β§ ((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦))β1) = π¦))) |
51 | 50 | rspcev 3612 |
. . . 4
β’ (((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦)) β (II Cn {β
, π΄}) β§ (((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦))β0) = π₯ β§ ((π§ β (0[,]1) β¦ if(π§ = 0, π₯, π¦))β1) = π¦)) β βπ β (II Cn {β
, π΄})((πβ0) = π₯ β§ (πβ1) = π¦)) |
52 | 30, 36, 45, 51 | syl12anc 835 |
. . 3
β’ ((π₯ β βͺ {β
, π΄} β§ π¦ β βͺ
{β
, π΄}) β
βπ β (II Cn
{β
, π΄})((πβ0) = π₯ β§ (πβ1) = π¦)) |
53 | 52 | rgen2 3197 |
. 2
β’
βπ₯ β
βͺ {β
, π΄}βπ¦ β βͺ
{β
, π΄}βπ β (II Cn {β
, π΄})((πβ0) = π₯ β§ (πβ1) = π¦) |
54 | | eqid 2732 |
. . 3
β’ βͺ {β
, π΄} = βͺ {β
,
π΄} |
55 | 54 | ispconn 34202 |
. 2
β’
({β
, π΄} β
PConn β ({β
, π΄}
β Top β§ βπ₯
β βͺ {β
, π΄}βπ¦ β βͺ
{β
, π΄}βπ β (II Cn {β
, π΄})((πβ0) = π₯ β§ (πβ1) = π¦))) |
56 | 1, 53, 55 | mpbir2an 709 |
1
β’ {β
,
π΄} β
PConn |