Step | Hyp | Ref
| Expression |
1 | | indistop 22060 |
. 2
⊢ {∅,
𝐴} ∈
Top |
2 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → 𝑥 ∈ ∪ {∅, 𝐴}) |
3 | | 0ex 5226 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
4 | | n0i 4264 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ∪ {∅, 𝐴} → ¬ ∪
{∅, 𝐴} =
∅) |
5 | | prprc2 4699 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝐴 ∈ V → {∅,
𝐴} =
{∅}) |
6 | 5 | unieqd 4850 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝐴 ∈ V → ∪ {∅, 𝐴} = ∪
{∅}) |
7 | 3 | unisn 4858 |
. . . . . . . . . . . . . . 15
⊢ ∪ {∅} = ∅ |
8 | 6, 7 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (¬
𝐴 ∈ V → ∪ {∅, 𝐴} = ∅) |
9 | 4, 8 | nsyl2 141 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∪ {∅, 𝐴} → 𝐴 ∈ V) |
10 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → 𝐴 ∈ V) |
11 | | uniprg 4853 |
. . . . . . . . . . . 12
⊢ ((∅
∈ V ∧ 𝐴 ∈ V)
→ ∪ {∅, 𝐴} = (∅ ∪ 𝐴)) |
12 | 3, 10, 11 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → ∪ {∅, 𝐴} = (∅ ∪ 𝐴)) |
13 | | uncom 4083 |
. . . . . . . . . . . 12
⊢ (∅
∪ 𝐴) = (𝐴 ∪ ∅) |
14 | | un0 4321 |
. . . . . . . . . . . 12
⊢ (𝐴 ∪ ∅) = 𝐴 |
15 | 13, 14 | eqtri 2766 |
. . . . . . . . . . 11
⊢ (∅
∪ 𝐴) = 𝐴 |
16 | 12, 15 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → ∪ {∅, 𝐴} = 𝐴) |
17 | 2, 16 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → 𝑥 ∈ 𝐴) |
18 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → 𝑦 ∈ ∪ {∅, 𝐴}) |
19 | 18, 16 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → 𝑦 ∈ 𝐴) |
20 | 17, 19 | ifcld 4502 |
. . . . . . . 8
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) →
if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ (((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) ∧ 𝑧 ∈ (0[,]1)) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴) |
22 | 21 | fmpttd 6971 |
. . . . . 6
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴) |
23 | | ovex 7288 |
. . . . . . 7
⊢ (0[,]1)
∈ V |
24 | | elmapg 8586 |
. . . . . . 7
⊢ ((𝐴 ∈ V ∧ (0[,]1) ∈
V) → ((𝑧 ∈
(0[,]1) ↦ if(𝑧 = 0,
𝑥, 𝑦)) ∈ (𝐴 ↑m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴)) |
25 | 10, 23, 24 | sylancl 585 |
. . . . . 6
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) →
((𝑧 ∈ (0[,]1) ↦
if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴 ↑m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴)) |
26 | 22, 25 | mpbird 256 |
. . . . 5
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴 ↑m
(0[,]1))) |
27 | | iitopon 23948 |
. . . . . 6
⊢ II ∈
(TopOn‘(0[,]1)) |
28 | | cnindis 22351 |
. . . . . 6
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝐴 ∈ V) → (II Cn {∅, 𝐴}) = (𝐴 ↑m
(0[,]1))) |
29 | 27, 10, 28 | sylancr 586 |
. . . . 5
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → (II Cn
{∅, 𝐴}) = (𝐴 ↑m
(0[,]1))) |
30 | 26, 29 | eleqtrrd 2842 |
. . . 4
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴})) |
31 | | 0elunit 13130 |
. . . . 5
⊢ 0 ∈
(0[,]1) |
32 | | iftrue 4462 |
. . . . . 6
⊢ (𝑧 = 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑥) |
33 | | eqid 2738 |
. . . . . 6
⊢ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) |
34 | | vex 3426 |
. . . . . 6
⊢ 𝑥 ∈ V |
35 | 32, 33, 34 | fvmpt 6857 |
. . . . 5
⊢ (0 ∈
(0[,]1) → ((𝑧 ∈
(0[,]1) ↦ if(𝑧 = 0,
𝑥, 𝑦))‘0) = 𝑥) |
36 | 31, 35 | mp1i 13 |
. . . 4
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) →
((𝑧 ∈ (0[,]1) ↦
if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥) |
37 | | 1elunit 13131 |
. . . . 5
⊢ 1 ∈
(0[,]1) |
38 | | ax-1ne0 10871 |
. . . . . . . 8
⊢ 1 ≠
0 |
39 | | neeq1 3005 |
. . . . . . . 8
⊢ (𝑧 = 1 → (𝑧 ≠ 0 ↔ 1 ≠ 0)) |
40 | 38, 39 | mpbiri 257 |
. . . . . . 7
⊢ (𝑧 = 1 → 𝑧 ≠ 0) |
41 | | ifnefalse 4468 |
. . . . . . 7
⊢ (𝑧 ≠ 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦) |
42 | 40, 41 | syl 17 |
. . . . . 6
⊢ (𝑧 = 1 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦) |
43 | | vex 3426 |
. . . . . 6
⊢ 𝑦 ∈ V |
44 | 42, 33, 43 | fvmpt 6857 |
. . . . 5
⊢ (1 ∈
(0[,]1) → ((𝑧 ∈
(0[,]1) ↦ if(𝑧 = 0,
𝑥, 𝑦))‘1) = 𝑦) |
45 | 37, 44 | mp1i 13 |
. . . 4
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) →
((𝑧 ∈ (0[,]1) ↦
if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦) |
46 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0)) |
47 | 46 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)) |
48 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1)) |
49 | 48 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)) |
50 | 47, 49 | anbi12d 630 |
. . . . 5
⊢ (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦))) |
51 | 50 | rspcev 3552 |
. . . 4
⊢ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}) ∧ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)) |
52 | 30, 36, 45, 51 | syl12anc 833 |
. . 3
⊢ ((𝑥 ∈ ∪ {∅, 𝐴} ∧ 𝑦 ∈ ∪
{∅, 𝐴}) →
∃𝑓 ∈ (II Cn
{∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)) |
53 | 52 | rgen2 3126 |
. 2
⊢
∀𝑥 ∈
∪ {∅, 𝐴}∀𝑦 ∈ ∪
{∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) |
54 | | eqid 2738 |
. . 3
⊢ ∪ {∅, 𝐴} = ∪ {∅,
𝐴} |
55 | 54 | ispconn 33085 |
. 2
⊢
({∅, 𝐴} ∈
PConn ↔ ({∅, 𝐴}
∈ Top ∧ ∀𝑥
∈ ∪ {∅, 𝐴}∀𝑦 ∈ ∪
{∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) |
56 | 1, 53, 55 | mpbir2an 707 |
1
⊢ {∅,
𝐴} ∈
PConn |