Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indispconn Structured version   Visualization version   GIF version

Theorem indispconn 32481
Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indispconn {∅, 𝐴} ∈ PConn

Proof of Theorem indispconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indistop 21610 . 2 {∅, 𝐴} ∈ Top
2 simpl 485 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥 {∅, 𝐴})
3 0ex 5211 . . . . . . . . . . . 12 ∅ ∈ V
4 n0i 4299 . . . . . . . . . . . . . 14 (𝑥 {∅, 𝐴} → ¬ {∅, 𝐴} = ∅)
5 prprc2 4702 . . . . . . . . . . . . . . . 16 𝐴 ∈ V → {∅, 𝐴} = {∅})
65unieqd 4852 . . . . . . . . . . . . . . 15 𝐴 ∈ V → {∅, 𝐴} = {∅})
73unisn 4858 . . . . . . . . . . . . . . 15 {∅} = ∅
86, 7syl6eq 2872 . . . . . . . . . . . . . 14 𝐴 ∈ V → {∅, 𝐴} = ∅)
94, 8nsyl2 143 . . . . . . . . . . . . 13 (𝑥 {∅, 𝐴} → 𝐴 ∈ V)
109adantr 483 . . . . . . . . . . . 12 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝐴 ∈ V)
11 uniprg 4856 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝐴 ∈ V) → {∅, 𝐴} = (∅ ∪ 𝐴))
123, 10, 11sylancr 589 . . . . . . . . . . 11 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = (∅ ∪ 𝐴))
13 uncom 4129 . . . . . . . . . . . 12 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
14 un0 4344 . . . . . . . . . . . 12 (𝐴 ∪ ∅) = 𝐴
1513, 14eqtri 2844 . . . . . . . . . . 11 (∅ ∪ 𝐴) = 𝐴
1612, 15syl6eq 2872 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = 𝐴)
172, 16eleqtrd 2915 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥𝐴)
18 simpr 487 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦 {∅, 𝐴})
1918, 16eleqtrd 2915 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦𝐴)
2017, 19ifcld 4512 . . . . . . . 8 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2120adantr 483 . . . . . . 7 (((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) ∧ 𝑧 ∈ (0[,]1)) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2221fmpttd 6879 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴)
23 ovex 7189 . . . . . . 7 (0[,]1) ∈ V
24 elmapg 8419 . . . . . . 7 ((𝐴 ∈ V ∧ (0[,]1) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2510, 23, 24sylancl 588 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2622, 25mpbird 259 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)))
27 iitopon 23487 . . . . . 6 II ∈ (TopOn‘(0[,]1))
28 cnindis 21900 . . . . . 6 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐴 ∈ V) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
2927, 10, 28sylancr 589 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
3026, 29eleqtrrd 2916 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}))
31 0elunit 12856 . . . . 5 0 ∈ (0[,]1)
32 iftrue 4473 . . . . . 6 (𝑧 = 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑥)
33 eqid 2821 . . . . . 6 (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))
34 vex 3497 . . . . . 6 𝑥 ∈ V
3532, 33, 34fvmpt 6768 . . . . 5 (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
3631, 35mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
37 1elunit 12857 . . . . 5 1 ∈ (0[,]1)
38 ax-1ne0 10606 . . . . . . . 8 1 ≠ 0
39 neeq1 3078 . . . . . . . 8 (𝑧 = 1 → (𝑧 ≠ 0 ↔ 1 ≠ 0))
4038, 39mpbiri 260 . . . . . . 7 (𝑧 = 1 → 𝑧 ≠ 0)
41 ifnefalse 4479 . . . . . . 7 (𝑧 ≠ 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
4240, 41syl 17 . . . . . 6 (𝑧 = 1 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
43 vex 3497 . . . . . 6 𝑦 ∈ V
4442, 33, 43fvmpt 6768 . . . . 5 (1 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
4537, 44mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
46 fveq1 6669 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0))
4746eqeq1d 2823 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥))
48 fveq1 6669 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1))
4948eqeq1d 2823 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦))
5047, 49anbi12d 632 . . . . 5 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)))
5150rspcev 3623 . . . 4 (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}) ∧ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5230, 36, 45, 51syl12anc 834 . . 3 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5352rgen2 3203 . 2 𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)
54 eqid 2821 . . 3 {∅, 𝐴} = {∅, 𝐴}
5554ispconn 32470 . 2 ({∅, 𝐴} ∈ PConn ↔ ({∅, 𝐴} ∈ Top ∧ ∀𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
561, 53, 55mpbir2an 709 1 {∅, 𝐴} ∈ PConn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cun 3934  c0 4291  ifcif 4467  {csn 4567  {cpr 4569   cuni 4838  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  0cc0 10537  1c1 10538  [,]cicc 12742  Topctop 21501  TopOnctopon 21518   Cn ccn 21832  IIcii 23483  PConncpconn 32466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cn 21835  df-ii 23485  df-pconn 32468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator