Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indispconn Structured version   Visualization version   GIF version

Theorem indispconn 33096
Description: The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indispconn {∅, 𝐴} ∈ PConn

Proof of Theorem indispconn
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indistop 22060 . 2 {∅, 𝐴} ∈ Top
2 simpl 482 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥 {∅, 𝐴})
3 0ex 5226 . . . . . . . . . . . 12 ∅ ∈ V
4 n0i 4264 . . . . . . . . . . . . . 14 (𝑥 {∅, 𝐴} → ¬ {∅, 𝐴} = ∅)
5 prprc2 4699 . . . . . . . . . . . . . . . 16 𝐴 ∈ V → {∅, 𝐴} = {∅})
65unieqd 4850 . . . . . . . . . . . . . . 15 𝐴 ∈ V → {∅, 𝐴} = {∅})
73unisn 4858 . . . . . . . . . . . . . . 15 {∅} = ∅
86, 7eqtrdi 2795 . . . . . . . . . . . . . 14 𝐴 ∈ V → {∅, 𝐴} = ∅)
94, 8nsyl2 141 . . . . . . . . . . . . 13 (𝑥 {∅, 𝐴} → 𝐴 ∈ V)
109adantr 480 . . . . . . . . . . . 12 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝐴 ∈ V)
11 uniprg 4853 . . . . . . . . . . . 12 ((∅ ∈ V ∧ 𝐴 ∈ V) → {∅, 𝐴} = (∅ ∪ 𝐴))
123, 10, 11sylancr 586 . . . . . . . . . . 11 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = (∅ ∪ 𝐴))
13 uncom 4083 . . . . . . . . . . . 12 (∅ ∪ 𝐴) = (𝐴 ∪ ∅)
14 un0 4321 . . . . . . . . . . . 12 (𝐴 ∪ ∅) = 𝐴
1513, 14eqtri 2766 . . . . . . . . . . 11 (∅ ∪ 𝐴) = 𝐴
1612, 15eqtrdi 2795 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → {∅, 𝐴} = 𝐴)
172, 16eleqtrd 2841 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑥𝐴)
18 simpr 484 . . . . . . . . . 10 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦 {∅, 𝐴})
1918, 16eleqtrd 2841 . . . . . . . . 9 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → 𝑦𝐴)
2017, 19ifcld 4502 . . . . . . . 8 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2120adantr 480 . . . . . . 7 (((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) ∧ 𝑧 ∈ (0[,]1)) → if(𝑧 = 0, 𝑥, 𝑦) ∈ 𝐴)
2221fmpttd 6971 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴)
23 ovex 7288 . . . . . . 7 (0[,]1) ∈ V
24 elmapg 8586 . . . . . . 7 ((𝐴 ∈ V ∧ (0[,]1) ∈ V) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2510, 23, 24sylancl 585 . . . . . 6 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)) ↔ (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)):(0[,]1)⟶𝐴))
2622, 25mpbird 256 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (𝐴m (0[,]1)))
27 iitopon 23948 . . . . . 6 II ∈ (TopOn‘(0[,]1))
28 cnindis 22351 . . . . . 6 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐴 ∈ V) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
2927, 10, 28sylancr 586 . . . . 5 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (II Cn {∅, 𝐴}) = (𝐴m (0[,]1)))
3026, 29eleqtrrd 2842 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}))
31 0elunit 13130 . . . . 5 0 ∈ (0[,]1)
32 iftrue 4462 . . . . . 6 (𝑧 = 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑥)
33 eqid 2738 . . . . . 6 (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))
34 vex 3426 . . . . . 6 𝑥 ∈ V
3532, 33, 34fvmpt 6857 . . . . 5 (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
3631, 35mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥)
37 1elunit 13131 . . . . 5 1 ∈ (0[,]1)
38 ax-1ne0 10871 . . . . . . . 8 1 ≠ 0
39 neeq1 3005 . . . . . . . 8 (𝑧 = 1 → (𝑧 ≠ 0 ↔ 1 ≠ 0))
4038, 39mpbiri 257 . . . . . . 7 (𝑧 = 1 → 𝑧 ≠ 0)
41 ifnefalse 4468 . . . . . . 7 (𝑧 ≠ 0 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
4240, 41syl 17 . . . . . 6 (𝑧 = 1 → if(𝑧 = 0, 𝑥, 𝑦) = 𝑦)
43 vex 3426 . . . . . 6 𝑦 ∈ V
4442, 33, 43fvmpt 6857 . . . . 5 (1 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
4537, 44mp1i 13 . . . 4 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)
46 fveq1 6755 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘0) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0))
4746eqeq1d 2740 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘0) = 𝑥 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥))
48 fveq1 6755 . . . . . . 7 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (𝑓‘1) = ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1))
4948eqeq1d 2740 . . . . . 6 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → ((𝑓‘1) = 𝑦 ↔ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦))
5047, 49anbi12d 630 . . . . 5 (𝑓 = (𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) → (((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦) ↔ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)))
5150rspcev 3552 . . . 4 (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦)) ∈ (II Cn {∅, 𝐴}) ∧ (((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘0) = 𝑥 ∧ ((𝑧 ∈ (0[,]1) ↦ if(𝑧 = 0, 𝑥, 𝑦))‘1) = 𝑦)) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5230, 36, 45, 51syl12anc 833 . . 3 ((𝑥 {∅, 𝐴} ∧ 𝑦 {∅, 𝐴}) → ∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))
5352rgen2 3126 . 2 𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)
54 eqid 2738 . . 3 {∅, 𝐴} = {∅, 𝐴}
5554ispconn 33085 . 2 ({∅, 𝐴} ∈ PConn ↔ ({∅, 𝐴} ∈ Top ∧ ∀𝑥 {∅, 𝐴}∀𝑦 {∅, 𝐴}∃𝑓 ∈ (II Cn {∅, 𝐴})((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)))
561, 53, 55mpbir2an 707 1 {∅, 𝐴} ∈ PConn
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cun 3881  c0 4253  ifcif 4456  {csn 4558  {cpr 4560   cuni 4836  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802  1c1 10803  [,]cicc 13011  Topctop 21950  TopOnctopon 21967   Cn ccn 22283  IIcii 23944  PConncpconn 33081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-ii 23946  df-pconn 33083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator