| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prssbd | Structured version Visualization version GIF version | ||
| Description: If a pair is a subset of a class, the second element of the pair is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| prssbd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| prssbd.2 | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| prssbd | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 2 | prssbd.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → 𝐵 ∈ 𝑉) |
| 4 | prssbd.2 | . . . . 5 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝐶) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → {𝐴, 𝐵} ⊆ 𝐶) |
| 6 | prssg 4799 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
| 7 | 6 | biimpar 477 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶)) |
| 8 | 1, 3, 5, 7 | syl21anc 837 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶)) |
| 9 | 8 | simprd 495 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → 𝐵 ∈ 𝐶) |
| 10 | prprc1 4745 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ V) → {𝐴, 𝐵} = {𝐵}) |
| 12 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ V) → {𝐴, 𝐵} ⊆ 𝐶) |
| 13 | 11, 12 | eqsstrrd 3999 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ V) → {𝐵} ⊆ 𝐶) |
| 14 | snssg 4763 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ 𝐶 ↔ {𝐵} ⊆ 𝐶)) | |
| 15 | 14 | biimpar 477 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ {𝐵} ⊆ 𝐶) → 𝐵 ∈ 𝐶) |
| 16 | 2, 13, 15 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ V) → 𝐵 ∈ 𝐶) |
| 17 | 9, 16 | pm2.61dan 812 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 {csn 4606 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: constrllcllem 33732 constrlccllem 33733 |
| Copyright terms: Public domain | W3C validator |