Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prssad Structured version   Visualization version   GIF version

Theorem prssad 32464
Description: If a pair is a subset of a class, the first element of the pair is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
prssad.1 (𝜑𝐴𝑉)
prssad.2 (𝜑 → {𝐴, 𝐵} ⊆ 𝐶)
Assertion
Ref Expression
prssad (𝜑𝐴𝐶)

Proof of Theorem prssad
StepHypRef Expression
1 prssad.1 . . . . 5 (𝜑𝐴𝑉)
21adantr 480 . . . 4 ((𝜑𝐵 ∈ V) → 𝐴𝑉)
3 simpr 484 . . . 4 ((𝜑𝐵 ∈ V) → 𝐵 ∈ V)
4 prssad.2 . . . . 5 (𝜑 → {𝐴, 𝐵} ⊆ 𝐶)
54adantr 480 . . . 4 ((𝜑𝐵 ∈ V) → {𝐴, 𝐵} ⊆ 𝐶)
6 prssg 4785 . . . . 5 ((𝐴𝑉𝐵 ∈ V) → ((𝐴𝐶𝐵𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶))
76biimpar 477 . . . 4 (((𝐴𝑉𝐵 ∈ V) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (𝐴𝐶𝐵𝐶))
82, 3, 5, 7syl21anc 837 . . 3 ((𝜑𝐵 ∈ V) → (𝐴𝐶𝐵𝐶))
98simpld 494 . 2 ((𝜑𝐵 ∈ V) → 𝐴𝐶)
10 prprc2 4732 . . . . 5 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴})
1110adantl 481 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = {𝐴})
124adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} ⊆ 𝐶)
1311, 12eqsstrrd 3984 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴} ⊆ 𝐶)
14 snssg 4749 . . . 4 (𝐴𝑉 → (𝐴𝐶 ↔ {𝐴} ⊆ 𝐶))
1514biimpar 477 . . 3 ((𝐴𝑉 ∧ {𝐴} ⊆ 𝐶) → 𝐴𝐶)
161, 13, 15syl2an2r 685 . 2 ((𝜑 ∧ ¬ 𝐵 ∈ V) → 𝐴𝐶)
179, 16pm2.61dan 812 1 (𝜑𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3916  {csn 4591  {cpr 4593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-sn 4592  df-pr 4594
This theorem is referenced by:  tpssad  32474  constrllcllem  33748  constrlccllem  33749
  Copyright terms: Public domain W3C validator