MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwss Structured version   Visualization version   GIF version

Theorem pwss 4558
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwss
StepHypRef Expression
1 dfss2 3907 . 2 (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥𝐵))
2 velpw 4538 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32imbi1i 350 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥𝐵))
43albii 1822 . 2 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
51, 4bitri 274 1 (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2106  wss 3887  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535
This theorem is referenced by:  axpweq  5287  setind2  9493  axgroth5  10580  axgroth6  10584  grumnudlem  41903  ismnuprim  41912
  Copyright terms: Public domain W3C validator