MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwss Structured version   Visualization version   GIF version

Theorem pwss 4572
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwss
StepHypRef Expression
1 df-ss 3915 . 2 (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥𝐵))
2 velpw 4554 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32imbi1i 349 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥𝐵))
43albii 1820 . 2 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
51, 4bitri 275 1 (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wcel 2113  wss 3898  𝒫 cpw 4549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-ss 3915  df-pw 4551
This theorem is referenced by:  axpweq  5291  setind2  9645  axgroth5  10722  axgroth6  10726  grumnudlem  44402  ismnuprim  44411
  Copyright terms: Public domain W3C validator