![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwss | Structured version Visualization version GIF version |
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.) |
Ref | Expression |
---|---|
pwss | ⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3993 | . 2 ⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | velpw 4627 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | albii 1817 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) |
5 | 1, 4 | bitri 275 | 1 ⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: axpweq 5369 setind2 9804 axgroth5 10893 axgroth6 10897 grumnudlem 44254 ismnuprim 44263 |
Copyright terms: Public domain | W3C validator |