MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwss Structured version   Visualization version   GIF version

Theorem pwss 4628
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwss
StepHypRef Expression
1 df-ss 3980 . 2 (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥𝐵))
2 velpw 4610 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32imbi1i 349 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥𝐵))
43albii 1816 . 2 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
51, 4bitri 275 1 (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2106  wss 3963  𝒫 cpw 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-pw 4607
This theorem is referenced by:  axpweq  5357  setind2  9773  axgroth5  10862  axgroth6  10866  grumnudlem  44281  ismnuprim  44290
  Copyright terms: Public domain W3C validator