![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwss | Structured version Visualization version GIF version |
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.) |
Ref | Expression |
---|---|
pwss | ⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3839 | . 2 ⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | selpw 4423 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
3 | 2 | imbi1i 342 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) |
4 | 3 | albii 1783 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) |
5 | 1, 4 | bitri 267 | 1 ⊢ (𝒫 𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1506 ∈ wcel 2051 ⊆ wss 3822 𝒫 cpw 4416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-v 3410 df-in 3829 df-ss 3836 df-pw 4418 |
This theorem is referenced by: axpweq 5114 setind2 8969 axgroth5 10042 axgroth6 10046 grumnudlem 40034 ismnuprim 40043 |
Copyright terms: Public domain | W3C validator |