MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwss Structured version   Visualization version   GIF version

Theorem pwss 4621
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem pwss
StepHypRef Expression
1 dfss2 3964 . 2 (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥𝐵))
2 velpw 4603 . . . 4 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32imbi1i 349 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥𝐵) ↔ (𝑥𝐴𝑥𝐵))
43albii 1814 . 2 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
51, 4bitri 275 1 (𝒫 𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532  wcel 2099  wss 3944  𝒫 cpw 4598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-in 3951  df-ss 3961  df-pw 4600
This theorem is referenced by:  axpweq  5344  setind2  9750  axgroth5  10839  axgroth6  10843  grumnudlem  43645  ismnuprim  43654
  Copyright terms: Public domain W3C validator