MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth5 Structured version   Visualization version   GIF version

Theorem axgroth5 10245
Description: The Tarski-Grothendieck axiom using abbreviations. (Contributed by NM, 22-Jun-2009.)
Assertion
Ref Expression
axgroth5 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem axgroth5
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ax-groth 10244 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
2 biid 263 . . . 4 (𝑥𝑦𝑥𝑦)
3 pwss 4563 . . . . . 6 (𝒫 𝑧𝑦 ↔ ∀𝑤(𝑤𝑧𝑤𝑦))
4 pwss 4563 . . . . . . 7 (𝒫 𝑧𝑤 ↔ ∀𝑣(𝑣𝑧𝑣𝑤))
54rexbii 3247 . . . . . 6 (∃𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))
63, 5anbi12i 628 . . . . 5 ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)))
76ralbii 3165 . . . 4 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)))
8 df-ral 3143 . . . . 5 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧(𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)))
9 velpw 4543 . . . . . . 7 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
109imbi1i 352 . . . . . 6 ((𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
1110albii 1816 . . . . 5 (∀𝑧(𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
128, 11bitri 277 . . . 4 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
132, 7, 123anbi123i 1151 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
1413exbii 1844 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
151, 14mpbir 233 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083  wal 1531  wex 1776  wcel 2110  wral 3138  wrex 3139  wss 3935  𝒫 cpw 4538   class class class wbr 5065  cen 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-groth 10244
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-v 3496  df-in 3942  df-ss 3951  df-pw 4540
This theorem is referenced by:  grothpw  10247  grothpwex  10248  axgroth6  10249  grothtsk  10256
  Copyright terms: Public domain W3C validator