MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axgroth5 Structured version   Visualization version   GIF version

Theorem axgroth5 10511
Description: The Tarski-Grothendieck axiom using abbreviations. (Contributed by NM, 22-Jun-2009.)
Assertion
Ref Expression
axgroth5 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem axgroth5
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 ax-groth 10510 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
2 biid 260 . . . 4 (𝑥𝑦𝑥𝑦)
3 pwss 4555 . . . . . 6 (𝒫 𝑧𝑦 ↔ ∀𝑤(𝑤𝑧𝑤𝑦))
4 pwss 4555 . . . . . . 7 (𝒫 𝑧𝑤 ↔ ∀𝑣(𝑣𝑧𝑣𝑤))
54rexbii 3177 . . . . . 6 (∃𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤))
63, 5anbi12i 626 . . . . 5 ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)))
76ralbii 3090 . . . 4 (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)))
8 df-ral 3068 . . . . 5 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧(𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)))
9 velpw 4535 . . . . . . 7 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
109imbi1i 349 . . . . . 6 ((𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)) ↔ (𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
1110albii 1823 . . . . 5 (∀𝑧(𝑧 ∈ 𝒫 𝑦 → (𝑧𝑦𝑧𝑦)) ↔ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
128, 11bitri 274 . . . 4 (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
132, 7, 123anbi123i 1153 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
1413exbii 1851 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦))))
151, 14mpbir 230 1 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085  wal 1537  wex 1783  wcel 2108  wral 3063  wrex 3064  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-groth 10510
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  grothpw  10513  grothpwex  10514  axgroth6  10515  grothtsk  10522
  Copyright terms: Public domain W3C validator