Step | Hyp | Ref
| Expression |
1 | | ax-groth 10510 |
. 2
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
2 | | biid 260 |
. . . 4
⊢ (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦) |
3 | | pwss 4555 |
. . . . . 6
⊢
(𝒫 𝑧 ⊆
𝑦 ↔ ∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦)) |
4 | | pwss 4555 |
. . . . . . 7
⊢
(𝒫 𝑧 ⊆
𝑤 ↔ ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) |
5 | 4 | rexbii 3177 |
. . . . . 6
⊢
(∃𝑤 ∈
𝑦 𝒫 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) |
6 | 3, 5 | anbi12i 626 |
. . . . 5
⊢
((𝒫 𝑧
⊆ 𝑦 ∧
∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) |
7 | 6 | ralbii 3090 |
. . . 4
⊢
(∀𝑧 ∈
𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ↔ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤))) |
8 | | df-ral 3068 |
. . . . 5
⊢
(∀𝑧 ∈
𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝒫 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
9 | | velpw 4535 |
. . . . . . 7
⊢ (𝑧 ∈ 𝒫 𝑦 ↔ 𝑧 ⊆ 𝑦) |
10 | 9 | imbi1i 349 |
. . . . . 6
⊢ ((𝑧 ∈ 𝒫 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) ↔ (𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
11 | 10 | albii 1823 |
. . . . 5
⊢
(∀𝑧(𝑧 ∈ 𝒫 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) ↔ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
12 | 8, 11 | bitri 274 |
. . . 4
⊢
(∀𝑧 ∈
𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
13 | 2, 7, 12 | 3anbi123i 1153 |
. . 3
⊢ ((𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)))) |
14 | 13 | exbii 1851 |
. 2
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)))) |
15 | 1, 14 | mpbir 230 |
1
⊢
∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦)) |