MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfilem Structured version   Visualization version   GIF version

Theorem pwfilem 9225
Description: Lemma for pwfi 9226. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5307. (Revised by BTernaryTau, 7-Sep-2024.)
Hypothesis
Ref Expression
pwfilem.1 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
Assertion
Ref Expression
pwfilem (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Distinct variable groups:   𝑏,𝑐   𝑥,𝑐
Allowed substitution hints:   𝐹(𝑥,𝑏,𝑐)

Proof of Theorem pwfilem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pwundif 4577 . 2 𝒫 (𝑏 ∪ {𝑥}) = ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏)
2 pwfilem.1 . . . . . 6 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
32funmpt2 6525 . . . . 5 Fun 𝐹
4 vex 3442 . . . . . . . . . 10 𝑐 ∈ V
5 vsnex 5376 . . . . . . . . . 10 {𝑥} ∈ V
64, 5unex 7684 . . . . . . . . 9 (𝑐 ∪ {𝑥}) ∈ V
76, 2dmmpti 6630 . . . . . . . 8 dom 𝐹 = 𝒫 𝑏
87imaeq2i 6013 . . . . . . 7 (𝐹 “ dom 𝐹) = (𝐹 “ 𝒫 𝑏)
9 imadmrn 6025 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
108, 9eqtr3i 2754 . . . . . 6 (𝐹 “ 𝒫 𝑏) = ran 𝐹
11 imafi 9222 . . . . . 6 ((Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin) → (𝐹 “ 𝒫 𝑏) ∈ Fin)
1210, 11eqeltrrid 2833 . . . . 5 ((Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin) → ran 𝐹 ∈ Fin)
133, 12mpan 690 . . . 4 (𝒫 𝑏 ∈ Fin → ran 𝐹 ∈ Fin)
14 eldifi 4084 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}))
155elpwun 7709 . . . . . . . 8 (𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}) ↔ (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
1614, 15sylib 218 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
17 undif1 4429 . . . . . . . 8 ((𝑑 ∖ {𝑥}) ∪ {𝑥}) = (𝑑 ∪ {𝑥})
18 elpwunsn 4638 . . . . . . . . . 10 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑥𝑑)
1918snssd 4763 . . . . . . . . 9 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → {𝑥} ⊆ 𝑑)
20 ssequn2 4142 . . . . . . . . 9 ({𝑥} ⊆ 𝑑 ↔ (𝑑 ∪ {𝑥}) = 𝑑)
2119, 20sylib 218 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∪ {𝑥}) = 𝑑)
2217, 21eqtr2id 2777 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
23 uneq1 4114 . . . . . . . 8 (𝑐 = (𝑑 ∖ {𝑥}) → (𝑐 ∪ {𝑥}) = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
2423rspceeqv 3602 . . . . . . 7 (((𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥})) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
2516, 22, 24syl2anc 584 . . . . . 6 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
262, 25, 14elrnmptd 5909 . . . . 5 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ ran 𝐹)
2726ssriv 3941 . . . 4 (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹
28 ssfi 9097 . . . 4 ((ran 𝐹 ∈ Fin ∧ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹) → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
2913, 27, 28sylancl 586 . . 3 (𝒫 𝑏 ∈ Fin → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
30 unfi 9095 . . 3 (((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin ∧ 𝒫 𝑏 ∈ Fin) → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
3129, 30mpancom 688 . 2 (𝒫 𝑏 ∈ Fin → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
321, 31eqeltrid 2832 1 (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3902  cun 3903  wss 3905  𝒫 cpw 4553  {csn 4579  cmpt 5176  dom cdm 5623  ran crn 5624  cima 5626  Fun wfun 6480  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-en 8880  df-dom 8881  df-fin 8883
This theorem is referenced by:  pwfi  9226
  Copyright terms: Public domain W3C validator