MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfilem Structured version   Visualization version   GIF version

Theorem pwfilem 8502
Description: Lemma for pwfi 8503. (Contributed by NM, 26-Mar-2007.)
Hypothesis
Ref Expression
pwfilem.1 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
Assertion
Ref Expression
pwfilem (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Distinct variable groups:   𝑏,𝑐   𝑥,𝑐
Allowed substitution hints:   𝐹(𝑥,𝑏,𝑐)

Proof of Theorem pwfilem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pwundif 5217 . 2 𝒫 (𝑏 ∪ {𝑥}) = ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏)
2 vex 3388 . . . . . . . . 9 𝑐 ∈ V
3 snex 5099 . . . . . . . . 9 {𝑥} ∈ V
42, 3unex 7190 . . . . . . . 8 (𝑐 ∪ {𝑥}) ∈ V
5 pwfilem.1 . . . . . . . 8 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
64, 5fnmpti 6233 . . . . . . 7 𝐹 Fn 𝒫 𝑏
7 dffn4 6337 . . . . . . 7 (𝐹 Fn 𝒫 𝑏𝐹:𝒫 𝑏onto→ran 𝐹)
86, 7mpbi 222 . . . . . 6 𝐹:𝒫 𝑏onto→ran 𝐹
9 fodomfi 8481 . . . . . 6 ((𝒫 𝑏 ∈ Fin ∧ 𝐹:𝒫 𝑏onto→ran 𝐹) → ran 𝐹 ≼ 𝒫 𝑏)
108, 9mpan2 683 . . . . 5 (𝒫 𝑏 ∈ Fin → ran 𝐹 ≼ 𝒫 𝑏)
11 domfi 8423 . . . . 5 ((𝒫 𝑏 ∈ Fin ∧ ran 𝐹 ≼ 𝒫 𝑏) → ran 𝐹 ∈ Fin)
1210, 11mpdan 679 . . . 4 (𝒫 𝑏 ∈ Fin → ran 𝐹 ∈ Fin)
13 eldifi 3930 . . . . . . . . 9 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}))
143elpwun 7211 . . . . . . . . 9 (𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}) ↔ (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
1513, 14sylib 210 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
16 undif1 4237 . . . . . . . . 9 ((𝑑 ∖ {𝑥}) ∪ {𝑥}) = (𝑑 ∪ {𝑥})
17 elpwunsn 4415 . . . . . . . . . . 11 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑥𝑑)
1817snssd 4528 . . . . . . . . . 10 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → {𝑥} ⊆ 𝑑)
19 ssequn2 3984 . . . . . . . . . 10 ({𝑥} ⊆ 𝑑 ↔ (𝑑 ∪ {𝑥}) = 𝑑)
2018, 19sylib 210 . . . . . . . . 9 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∪ {𝑥}) = 𝑑)
2116, 20syl5req 2846 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
22 uneq1 3958 . . . . . . . . 9 (𝑐 = (𝑑 ∖ {𝑥}) → (𝑐 ∪ {𝑥}) = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
2322rspceeqv 3515 . . . . . . . 8 (((𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥})) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
2415, 21, 23syl2anc 580 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
255, 4elrnmpti 5580 . . . . . . 7 (𝑑 ∈ ran 𝐹 ↔ ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
2624, 25sylibr 226 . . . . . 6 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ ran 𝐹)
2726ssriv 3802 . . . . 5 (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹
28 ssdomg 8241 . . . . 5 (ran 𝐹 ∈ Fin → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹 → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ≼ ran 𝐹))
2912, 27, 28mpisyl 21 . . . 4 (𝒫 𝑏 ∈ Fin → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ≼ ran 𝐹)
30 domfi 8423 . . . 4 ((ran 𝐹 ∈ Fin ∧ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ≼ ran 𝐹) → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
3112, 29, 30syl2anc 580 . . 3 (𝒫 𝑏 ∈ Fin → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
32 unfi 8469 . . 3 (((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin ∧ 𝒫 𝑏 ∈ Fin) → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
3331, 32mpancom 680 . 2 (𝒫 𝑏 ∈ Fin → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
341, 33syl5eqel 2882 1 (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  wrex 3090  cdif 3766  cun 3767  wss 3769  𝒫 cpw 4349  {csn 4368   class class class wbr 4843  cmpt 4922  ran crn 5313   Fn wfn 6096  ontowfo 6099  cdom 8193  Fincfn 8195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-fin 8199
This theorem is referenced by:  pwfi  8503
  Copyright terms: Public domain W3C validator