MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfilem Structured version   Visualization version   GIF version

Theorem pwfilem 9208
Description: Lemma for pwfi 9209. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5369. (Revised by BTernaryTau, 7-Sep-2024.)
Hypothesis
Ref Expression
pwfilem.1 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
Assertion
Ref Expression
pwfilem (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Distinct variable groups:   𝑏,𝑐   𝑥,𝑐
Allowed substitution hints:   𝐹(𝑥,𝑏,𝑐)

Proof of Theorem pwfilem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pwundif 4630 . 2 𝒫 (𝑏 ∪ {𝑥}) = ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏)
2 pwfilem.1 . . . . . 6 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
32funmpt2 6597 . . . . 5 Fun 𝐹
4 vex 3477 . . . . . . . . . 10 𝑐 ∈ V
5 vsnex 5435 . . . . . . . . . 10 {𝑥} ∈ V
64, 5unex 7754 . . . . . . . . 9 (𝑐 ∪ {𝑥}) ∈ V
76, 2dmmpti 6704 . . . . . . . 8 dom 𝐹 = 𝒫 𝑏
87imaeq2i 6066 . . . . . . 7 (𝐹 “ dom 𝐹) = (𝐹 “ 𝒫 𝑏)
9 imadmrn 6078 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
108, 9eqtr3i 2758 . . . . . 6 (𝐹 “ 𝒫 𝑏) = ran 𝐹
11 imafi 9206 . . . . . 6 ((Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin) → (𝐹 “ 𝒫 𝑏) ∈ Fin)
1210, 11eqeltrrid 2834 . . . . 5 ((Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin) → ran 𝐹 ∈ Fin)
133, 12mpan 688 . . . 4 (𝒫 𝑏 ∈ Fin → ran 𝐹 ∈ Fin)
14 eldifi 4127 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}))
155elpwun 7777 . . . . . . . 8 (𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}) ↔ (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
1614, 15sylib 217 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
17 undif1 4479 . . . . . . . 8 ((𝑑 ∖ {𝑥}) ∪ {𝑥}) = (𝑑 ∪ {𝑥})
18 elpwunsn 4692 . . . . . . . . . 10 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑥𝑑)
1918snssd 4817 . . . . . . . . 9 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → {𝑥} ⊆ 𝑑)
20 ssequn2 4185 . . . . . . . . 9 ({𝑥} ⊆ 𝑑 ↔ (𝑑 ∪ {𝑥}) = 𝑑)
2119, 20sylib 217 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∪ {𝑥}) = 𝑑)
2217, 21eqtr2id 2781 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
23 uneq1 4157 . . . . . . . 8 (𝑐 = (𝑑 ∖ {𝑥}) → (𝑐 ∪ {𝑥}) = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
2423rspceeqv 3633 . . . . . . 7 (((𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥})) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
2516, 22, 24syl2anc 582 . . . . . 6 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
262, 25, 14elrnmptd 5967 . . . . 5 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ ran 𝐹)
2726ssriv 3986 . . . 4 (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹
28 ssfi 9204 . . . 4 ((ran 𝐹 ∈ Fin ∧ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹) → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
2913, 27, 28sylancl 584 . . 3 (𝒫 𝑏 ∈ Fin → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
30 unfi 9203 . . 3 (((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin ∧ 𝒫 𝑏 ∈ Fin) → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
3129, 30mpancom 686 . 2 (𝒫 𝑏 ∈ Fin → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
321, 31eqeltrid 2833 1 (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wrex 3067  cdif 3946  cun 3947  wss 3949  𝒫 cpw 4606  {csn 4632  cmpt 5235  dom cdm 5682  ran crn 5683  cima 5685  Fun wfun 6547  Fincfn 8970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7877  df-1o 8493  df-en 8971  df-fin 8974
This theorem is referenced by:  pwfi  9209  pwfiOLD  9379
  Copyright terms: Public domain W3C validator