MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfilem Structured version   Visualization version   GIF version

Theorem pwfilem 9197
Description: Lemma for pwfi 9198. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5298. (Revised by BTernaryTau, 7-Sep-2024.)
Hypothesis
Ref Expression
pwfilem.1 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
Assertion
Ref Expression
pwfilem (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Distinct variable groups:   𝑏,𝑐   𝑥,𝑐
Allowed substitution hints:   𝐹(𝑥,𝑏,𝑐)

Proof of Theorem pwfilem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pwundif 4569 . 2 𝒫 (𝑏 ∪ {𝑥}) = ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏)
2 pwfilem.1 . . . . . 6 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
32funmpt2 6515 . . . . 5 Fun 𝐹
4 vex 3440 . . . . . . . . . 10 𝑐 ∈ V
5 vsnex 5367 . . . . . . . . . 10 {𝑥} ∈ V
64, 5unex 7672 . . . . . . . . 9 (𝑐 ∪ {𝑥}) ∈ V
76, 2dmmpti 6620 . . . . . . . 8 dom 𝐹 = 𝒫 𝑏
87imaeq2i 6002 . . . . . . 7 (𝐹 “ dom 𝐹) = (𝐹 “ 𝒫 𝑏)
9 imadmrn 6014 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
108, 9eqtr3i 2756 . . . . . 6 (𝐹 “ 𝒫 𝑏) = ran 𝐹
11 imafi 9194 . . . . . 6 ((Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin) → (𝐹 “ 𝒫 𝑏) ∈ Fin)
1210, 11eqeltrrid 2836 . . . . 5 ((Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin) → ran 𝐹 ∈ Fin)
133, 12mpan 690 . . . 4 (𝒫 𝑏 ∈ Fin → ran 𝐹 ∈ Fin)
14 eldifi 4076 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}))
155elpwun 7697 . . . . . . . 8 (𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}) ↔ (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
1614, 15sylib 218 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
17 undif1 4421 . . . . . . . 8 ((𝑑 ∖ {𝑥}) ∪ {𝑥}) = (𝑑 ∪ {𝑥})
18 elpwunsn 4632 . . . . . . . . . 10 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑥𝑑)
1918snssd 4756 . . . . . . . . 9 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → {𝑥} ⊆ 𝑑)
20 ssequn2 4134 . . . . . . . . 9 ({𝑥} ⊆ 𝑑 ↔ (𝑑 ∪ {𝑥}) = 𝑑)
2119, 20sylib 218 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∪ {𝑥}) = 𝑑)
2217, 21eqtr2id 2779 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
23 uneq1 4106 . . . . . . . 8 (𝑐 = (𝑑 ∖ {𝑥}) → (𝑐 ∪ {𝑥}) = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
2423rspceeqv 3595 . . . . . . 7 (((𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥})) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
2516, 22, 24syl2anc 584 . . . . . 6 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
262, 25, 14elrnmptd 5898 . . . . 5 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ ran 𝐹)
2726ssriv 3933 . . . 4 (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹
28 ssfi 9077 . . . 4 ((ran 𝐹 ∈ Fin ∧ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹) → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
2913, 27, 28sylancl 586 . . 3 (𝒫 𝑏 ∈ Fin → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
30 unfi 9075 . . 3 (((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin ∧ 𝒫 𝑏 ∈ Fin) → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
3129, 30mpancom 688 . 2 (𝒫 𝑏 ∈ Fin → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
321, 31eqeltrid 2835 1 (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cdif 3894  cun 3895  wss 3897  𝒫 cpw 4545  {csn 4571  cmpt 5167  dom cdm 5611  ran crn 5612  cima 5614  Fun wfun 6470  Fincfn 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-1o 8380  df-en 8865  df-dom 8866  df-fin 8868
This theorem is referenced by:  pwfi  9198
  Copyright terms: Public domain W3C validator