MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfilem Structured version   Visualization version   GIF version

Theorem pwfilem 9243
Description: Lemma for pwfi 9244. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5315. (Revised by BTernaryTau, 7-Sep-2024.)
Hypothesis
Ref Expression
pwfilem.1 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
Assertion
Ref Expression
pwfilem (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Distinct variable groups:   𝑏,𝑐   𝑥,𝑐
Allowed substitution hints:   𝐹(𝑥,𝑏,𝑐)

Proof of Theorem pwfilem
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 pwundif 4583 . 2 𝒫 (𝑏 ∪ {𝑥}) = ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏)
2 pwfilem.1 . . . . . 6 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥}))
32funmpt2 6539 . . . . 5 Fun 𝐹
4 vex 3448 . . . . . . . . . 10 𝑐 ∈ V
5 vsnex 5384 . . . . . . . . . 10 {𝑥} ∈ V
64, 5unex 7700 . . . . . . . . 9 (𝑐 ∪ {𝑥}) ∈ V
76, 2dmmpti 6644 . . . . . . . 8 dom 𝐹 = 𝒫 𝑏
87imaeq2i 6018 . . . . . . 7 (𝐹 “ dom 𝐹) = (𝐹 “ 𝒫 𝑏)
9 imadmrn 6030 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
108, 9eqtr3i 2754 . . . . . 6 (𝐹 “ 𝒫 𝑏) = ran 𝐹
11 imafi 9240 . . . . . 6 ((Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin) → (𝐹 “ 𝒫 𝑏) ∈ Fin)
1210, 11eqeltrrid 2833 . . . . 5 ((Fun 𝐹 ∧ 𝒫 𝑏 ∈ Fin) → ran 𝐹 ∈ Fin)
133, 12mpan 690 . . . 4 (𝒫 𝑏 ∈ Fin → ran 𝐹 ∈ Fin)
14 eldifi 4090 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}))
155elpwun 7725 . . . . . . . 8 (𝑑 ∈ 𝒫 (𝑏 ∪ {𝑥}) ↔ (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
1614, 15sylib 218 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏)
17 undif1 4435 . . . . . . . 8 ((𝑑 ∖ {𝑥}) ∪ {𝑥}) = (𝑑 ∪ {𝑥})
18 elpwunsn 4644 . . . . . . . . . 10 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑥𝑑)
1918snssd 4769 . . . . . . . . 9 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → {𝑥} ⊆ 𝑑)
20 ssequn2 4148 . . . . . . . . 9 ({𝑥} ⊆ 𝑑 ↔ (𝑑 ∪ {𝑥}) = 𝑑)
2119, 20sylib 218 . . . . . . . 8 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → (𝑑 ∪ {𝑥}) = 𝑑)
2217, 21eqtr2id 2777 . . . . . . 7 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
23 uneq1 4120 . . . . . . . 8 (𝑐 = (𝑑 ∖ {𝑥}) → (𝑐 ∪ {𝑥}) = ((𝑑 ∖ {𝑥}) ∪ {𝑥}))
2423rspceeqv 3608 . . . . . . 7 (((𝑑 ∖ {𝑥}) ∈ 𝒫 𝑏𝑑 = ((𝑑 ∖ {𝑥}) ∪ {𝑥})) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
2516, 22, 24syl2anc 584 . . . . . 6 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → ∃𝑐 ∈ 𝒫 𝑏𝑑 = (𝑐 ∪ {𝑥}))
262, 25, 14elrnmptd 5916 . . . . 5 (𝑑 ∈ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) → 𝑑 ∈ ran 𝐹)
2726ssriv 3947 . . . 4 (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹
28 ssfi 9114 . . . 4 ((ran 𝐹 ∈ Fin ∧ (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ⊆ ran 𝐹) → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
2913, 27, 28sylancl 586 . . 3 (𝒫 𝑏 ∈ Fin → (𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin)
30 unfi 9112 . . 3 (((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∈ Fin ∧ 𝒫 𝑏 ∈ Fin) → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
3129, 30mpancom 688 . 2 (𝒫 𝑏 ∈ Fin → ((𝒫 (𝑏 ∪ {𝑥}) ∖ 𝒫 𝑏) ∪ 𝒫 𝑏) ∈ Fin)
321, 31eqeltrid 2832 1 (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3908  cun 3909  wss 3911  𝒫 cpw 4559  {csn 4585  cmpt 5183  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-en 8896  df-dom 8897  df-fin 8899
This theorem is referenced by:  pwfi  9244
  Copyright terms: Public domain W3C validator