MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl0 Structured version   Visualization version   GIF version

Theorem wlkl0 30296
Description: There is exactly one walk of length 0 on each vertex 𝑋. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkl0 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋

Proof of Theorem wlkl0
StepHypRef Expression
1 clwlkwlk 29705 . . . . . . . 8 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 ∈ (Walks‘𝐺))
2 wlkop 29556 . . . . . . . 8 (𝑤 ∈ (Walks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
31, 2syl 17 . . . . . . 7 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
4 fvex 6871 . . . . . . . . . . . . . . 15 (1st𝑤) ∈ V
5 hasheq0 14328 . . . . . . . . . . . . . . 15 ((1st𝑤) ∈ V → ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅))
64, 5ax-mp 5 . . . . . . . . . . . . . 14 ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅)
76biimpi 216 . . . . . . . . . . . . 13 ((♯‘(1st𝑤)) = 0 → (1st𝑤) = ∅)
87adantr 480 . . . . . . . . . . . 12 (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (1st𝑤) = ∅)
983ad2ant3 1135 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
108adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
1110breq1d 5117 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ∅(ClWalks‘𝐺)(2nd𝑤)))
12 clwlknon2num.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtx‘𝐺)
13121vgrex 28929 . . . . . . . . . . . . . . . . . 18 (𝑋𝑉𝐺 ∈ V)
14120clwlk 30059 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ V → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝑋𝑉 → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1615adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1711, 16bitrd 279 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
18 fz0sn 13588 . . . . . . . . . . . . . . . . 17 (0...0) = {0}
1918feq2i 6680 . . . . . . . . . . . . . . . 16 ((2nd𝑤):(0...0)⟶𝑉 ↔ (2nd𝑤):{0}⟶𝑉)
20 c0ex 11168 . . . . . . . . . . . . . . . . . 18 0 ∈ V
2120fsn2 7108 . . . . . . . . . . . . . . . . 17 ((2nd𝑤):{0}⟶𝑉 ↔ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}))
22 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})
23 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤)‘0) = 𝑋)
2423adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ((2nd𝑤)‘0) = 𝑋)
2524opeq2d 4844 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ⟨0, ((2nd𝑤)‘0)⟩ = ⟨0, 𝑋⟩)
2625sneqd 4601 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → {⟨0, ((2nd𝑤)‘0)⟩} = {⟨0, 𝑋⟩})
2722, 26eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, 𝑋⟩})
2827ex 412 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}) → (2nd𝑤) = {⟨0, 𝑋⟩}))
2921, 28biimtrid 242 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):{0}⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3019, 29biimtrid 242 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):(0...0)⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3117, 30sylbid 240 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩}))
3231ex 412 . . . . . . . . . . . . 13 (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩})))
3332com23 86 . . . . . . . . . . . 12 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (2nd𝑤) = {⟨0, 𝑋⟩})))
34333imp 1110 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (2nd𝑤) = {⟨0, 𝑋⟩})
359, 34opeq12d 4845 . . . . . . . . . 10 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)
36353exp 1119 . . . . . . . . 9 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
37 eleq1 2816 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺)))
38 df-br 5108 . . . . . . . . . . 11 ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺))
3937, 38bitr4di 289 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤)))
40 eqeq1 2733 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ ↔ ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))
4140imbi2d 340 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩) ↔ (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4239, 41imbi12d 344 . . . . . . . . 9 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)) ↔ ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4336, 42imbitrrid 246 . . . . . . . 8 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4443com23 86 . . . . . . 7 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
453, 44mpcom 38 . . . . . 6 (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4645com12 32 . . . . 5 (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4746impd 410 . . . 4 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
48 eqidd 2730 . . . . . . 7 (𝑋𝑉 → ∅ = ∅)
4920a1i 11 . . . . . . . 8 (𝑋𝑉 → 0 ∈ V)
50 snidg 4624 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
5149, 50fsnd 6843 . . . . . . 7 (𝑋𝑉 → {⟨0, 𝑋⟩}:{0}⟶{𝑋})
52120clwlkv 30060 . . . . . . 7 ((𝑋𝑉 ∧ ∅ = ∅ ∧ {⟨0, 𝑋⟩}:{0}⟶{𝑋}) → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
5348, 51, 52mpd3an23 1465 . . . . . 6 (𝑋𝑉 → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
54 hash0 14332 . . . . . . 7 (♯‘∅) = 0
5554a1i 11 . . . . . 6 (𝑋𝑉 → (♯‘∅) = 0)
56 fvsng 7154 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝑉) → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5720, 56mpan 690 . . . . . 6 (𝑋𝑉 → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5853, 55, 57jca32 515 . . . . 5 (𝑋𝑉 → (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
59 eleq1 2816 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺)))
60 df-br 5108 . . . . . . 7 (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺))
6159, 60bitr4di 289 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ∅(ClWalks‘𝐺){⟨0, 𝑋⟩}))
62 0ex 5262 . . . . . . . . 9 ∅ ∈ V
63 snex 5391 . . . . . . . . 9 {⟨0, 𝑋⟩} ∈ V
6462, 63op1std 7978 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (1st𝑤) = ∅)
6564fveqeq2d 6866 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((♯‘(1st𝑤)) = 0 ↔ (♯‘∅) = 0))
6662, 63op2ndd 7979 . . . . . . . . 9 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (2nd𝑤) = {⟨0, 𝑋⟩})
6766fveq1d 6860 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((2nd𝑤)‘0) = ({⟨0, 𝑋⟩}‘0))
6867eqeq1d 2731 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((2nd𝑤)‘0) = 𝑋 ↔ ({⟨0, 𝑋⟩}‘0) = 𝑋))
6965, 68anbi12d 632 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
7061, 69anbi12d 632 . . . . 5 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋))))
7158, 70syl5ibrcom 247 . . . 4 (𝑋𝑉 → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋))))
7247, 71impbid 212 . . 3 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7372alrimiv 1927 . 2 (𝑋𝑉 → ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
74 rabeqsn 4631 . 2 ({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩} ↔ ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7573, 74sylibr 234 1 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  0cc0 11068  ...cfz 13468  chash 14295  Vtxcvtx 28923  Walkscwlks 29524  ClWalkscclwlks 29700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-wlks 29527  df-clwlks 29701
This theorem is referenced by:  numclwlk1lem1  30298
  Copyright terms: Public domain W3C validator