MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl0 Structured version   Visualization version   GIF version

Theorem wlkl0 30303
Description: There is exactly one walk of length 0 on each vertex 𝑋. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkl0 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋

Proof of Theorem wlkl0
StepHypRef Expression
1 clwlkwlk 29712 . . . . . . . 8 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 ∈ (Walks‘𝐺))
2 wlkop 29563 . . . . . . . 8 (𝑤 ∈ (Walks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
31, 2syl 17 . . . . . . 7 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
4 fvex 6874 . . . . . . . . . . . . . . 15 (1st𝑤) ∈ V
5 hasheq0 14335 . . . . . . . . . . . . . . 15 ((1st𝑤) ∈ V → ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅))
64, 5ax-mp 5 . . . . . . . . . . . . . 14 ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅)
76biimpi 216 . . . . . . . . . . . . 13 ((♯‘(1st𝑤)) = 0 → (1st𝑤) = ∅)
87adantr 480 . . . . . . . . . . . 12 (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (1st𝑤) = ∅)
983ad2ant3 1135 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
108adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
1110breq1d 5120 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ∅(ClWalks‘𝐺)(2nd𝑤)))
12 clwlknon2num.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtx‘𝐺)
13121vgrex 28936 . . . . . . . . . . . . . . . . . 18 (𝑋𝑉𝐺 ∈ V)
14120clwlk 30066 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ V → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝑋𝑉 → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1615adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1711, 16bitrd 279 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
18 fz0sn 13595 . . . . . . . . . . . . . . . . 17 (0...0) = {0}
1918feq2i 6683 . . . . . . . . . . . . . . . 16 ((2nd𝑤):(0...0)⟶𝑉 ↔ (2nd𝑤):{0}⟶𝑉)
20 c0ex 11175 . . . . . . . . . . . . . . . . . 18 0 ∈ V
2120fsn2 7111 . . . . . . . . . . . . . . . . 17 ((2nd𝑤):{0}⟶𝑉 ↔ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}))
22 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})
23 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤)‘0) = 𝑋)
2423adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ((2nd𝑤)‘0) = 𝑋)
2524opeq2d 4847 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ⟨0, ((2nd𝑤)‘0)⟩ = ⟨0, 𝑋⟩)
2625sneqd 4604 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → {⟨0, ((2nd𝑤)‘0)⟩} = {⟨0, 𝑋⟩})
2722, 26eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, 𝑋⟩})
2827ex 412 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}) → (2nd𝑤) = {⟨0, 𝑋⟩}))
2921, 28biimtrid 242 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):{0}⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3019, 29biimtrid 242 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):(0...0)⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3117, 30sylbid 240 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩}))
3231ex 412 . . . . . . . . . . . . 13 (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩})))
3332com23 86 . . . . . . . . . . . 12 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (2nd𝑤) = {⟨0, 𝑋⟩})))
34333imp 1110 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (2nd𝑤) = {⟨0, 𝑋⟩})
359, 34opeq12d 4848 . . . . . . . . . 10 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)
36353exp 1119 . . . . . . . . 9 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
37 eleq1 2817 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺)))
38 df-br 5111 . . . . . . . . . . 11 ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺))
3937, 38bitr4di 289 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤)))
40 eqeq1 2734 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ ↔ ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))
4140imbi2d 340 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩) ↔ (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4239, 41imbi12d 344 . . . . . . . . 9 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)) ↔ ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4336, 42imbitrrid 246 . . . . . . . 8 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4443com23 86 . . . . . . 7 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
453, 44mpcom 38 . . . . . 6 (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4645com12 32 . . . . 5 (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4746impd 410 . . . 4 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
48 eqidd 2731 . . . . . . 7 (𝑋𝑉 → ∅ = ∅)
4920a1i 11 . . . . . . . 8 (𝑋𝑉 → 0 ∈ V)
50 snidg 4627 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
5149, 50fsnd 6846 . . . . . . 7 (𝑋𝑉 → {⟨0, 𝑋⟩}:{0}⟶{𝑋})
52120clwlkv 30067 . . . . . . 7 ((𝑋𝑉 ∧ ∅ = ∅ ∧ {⟨0, 𝑋⟩}:{0}⟶{𝑋}) → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
5348, 51, 52mpd3an23 1465 . . . . . 6 (𝑋𝑉 → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
54 hash0 14339 . . . . . . 7 (♯‘∅) = 0
5554a1i 11 . . . . . 6 (𝑋𝑉 → (♯‘∅) = 0)
56 fvsng 7157 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝑉) → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5720, 56mpan 690 . . . . . 6 (𝑋𝑉 → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5853, 55, 57jca32 515 . . . . 5 (𝑋𝑉 → (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
59 eleq1 2817 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺)))
60 df-br 5111 . . . . . . 7 (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺))
6159, 60bitr4di 289 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ∅(ClWalks‘𝐺){⟨0, 𝑋⟩}))
62 0ex 5265 . . . . . . . . 9 ∅ ∈ V
63 snex 5394 . . . . . . . . 9 {⟨0, 𝑋⟩} ∈ V
6462, 63op1std 7981 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (1st𝑤) = ∅)
6564fveqeq2d 6869 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((♯‘(1st𝑤)) = 0 ↔ (♯‘∅) = 0))
6662, 63op2ndd 7982 . . . . . . . . 9 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (2nd𝑤) = {⟨0, 𝑋⟩})
6766fveq1d 6863 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((2nd𝑤)‘0) = ({⟨0, 𝑋⟩}‘0))
6867eqeq1d 2732 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((2nd𝑤)‘0) = 𝑋 ↔ ({⟨0, 𝑋⟩}‘0) = 𝑋))
6965, 68anbi12d 632 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
7061, 69anbi12d 632 . . . . 5 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋))))
7158, 70syl5ibrcom 247 . . . 4 (𝑋𝑉 → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋))))
7247, 71impbid 212 . . 3 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7372alrimiv 1927 . 2 (𝑋𝑉 → ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
74 rabeqsn 4634 . 2 ({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩} ↔ ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7573, 74sylibr 234 1 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  c0 4299  {csn 4592  cop 4598   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  0cc0 11075  ...cfz 13475  chash 14302  Vtxcvtx 28930  Walkscwlks 29531  ClWalkscclwlks 29707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-wlks 29534  df-clwlks 29708
This theorem is referenced by:  numclwlk1lem1  30305
  Copyright terms: Public domain W3C validator