MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl0 Structured version   Visualization version   GIF version

Theorem wlkl0 29620
Description: There is exactly one walk of length 0 on each vertex 𝑋. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
wlkl0 (𝑋 ∈ 𝑉 β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩})
Distinct variable groups:   𝑀,𝐺   𝑀,𝑉   𝑀,𝑋

Proof of Theorem wlkl0
StepHypRef Expression
1 clwlkwlk 29032 . . . . . . . 8 (𝑀 ∈ (ClWalksβ€˜πΊ) β†’ 𝑀 ∈ (Walksβ€˜πΊ))
2 wlkop 28885 . . . . . . . 8 (𝑀 ∈ (Walksβ€˜πΊ) β†’ 𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩)
31, 2syl 17 . . . . . . 7 (𝑀 ∈ (ClWalksβ€˜πΊ) β†’ 𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩)
4 fvex 6905 . . . . . . . . . . . . . . 15 (1st β€˜π‘€) ∈ V
5 hasheq0 14323 . . . . . . . . . . . . . . 15 ((1st β€˜π‘€) ∈ V β†’ ((β™―β€˜(1st β€˜π‘€)) = 0 ↔ (1st β€˜π‘€) = βˆ…))
64, 5ax-mp 5 . . . . . . . . . . . . . 14 ((β™―β€˜(1st β€˜π‘€)) = 0 ↔ (1st β€˜π‘€) = βˆ…)
76biimpi 215 . . . . . . . . . . . . 13 ((β™―β€˜(1st β€˜π‘€)) = 0 β†’ (1st β€˜π‘€) = βˆ…)
87adantr 482 . . . . . . . . . . . 12 (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ (1st β€˜π‘€) = βˆ…)
983ad2ant3 1136 . . . . . . . . . . 11 ((𝑋 ∈ 𝑉 ∧ (1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ (1st β€˜π‘€) = βˆ…)
108adantl 483 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ (1st β€˜π‘€) = βˆ…)
1110breq1d 5159 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ ((1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ↔ βˆ…(ClWalksβ€˜πΊ)(2nd β€˜π‘€)))
12 clwlknon2num.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtxβ€˜πΊ)
13121vgrex 28262 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ 𝑉 β†’ 𝐺 ∈ V)
14120clwlk 29383 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ V β†’ (βˆ…(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ↔ (2nd β€˜π‘€):(0...0)βŸΆπ‘‰))
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ 𝑉 β†’ (βˆ…(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ↔ (2nd β€˜π‘€):(0...0)βŸΆπ‘‰))
1615adantr 482 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ (βˆ…(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ↔ (2nd β€˜π‘€):(0...0)βŸΆπ‘‰))
1711, 16bitrd 279 . . . . . . . . . . . . . . 15 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ ((1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ↔ (2nd β€˜π‘€):(0...0)βŸΆπ‘‰))
18 fz0sn 13601 . . . . . . . . . . . . . . . . 17 (0...0) = {0}
1918feq2i 6710 . . . . . . . . . . . . . . . 16 ((2nd β€˜π‘€):(0...0)βŸΆπ‘‰ ↔ (2nd β€˜π‘€):{0}βŸΆπ‘‰)
20 c0ex 11208 . . . . . . . . . . . . . . . . . 18 0 ∈ V
2120fsn2 7134 . . . . . . . . . . . . . . . . 17 ((2nd β€˜π‘€):{0}βŸΆπ‘‰ ↔ (((2nd β€˜π‘€)β€˜0) ∈ 𝑉 ∧ (2nd β€˜π‘€) = {⟨0, ((2nd β€˜π‘€)β€˜0)⟩}))
22 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ∧ (((2nd β€˜π‘€)β€˜0) ∈ 𝑉 ∧ (2nd β€˜π‘€) = {⟨0, ((2nd β€˜π‘€)β€˜0)⟩})) β†’ (2nd β€˜π‘€) = {⟨0, ((2nd β€˜π‘€)β€˜0)⟩})
23 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ ((2nd β€˜π‘€)β€˜0) = 𝑋)
2423adantr 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ∧ (((2nd β€˜π‘€)β€˜0) ∈ 𝑉 ∧ (2nd β€˜π‘€) = {⟨0, ((2nd β€˜π‘€)β€˜0)⟩})) β†’ ((2nd β€˜π‘€)β€˜0) = 𝑋)
2524opeq2d 4881 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ∧ (((2nd β€˜π‘€)β€˜0) ∈ 𝑉 ∧ (2nd β€˜π‘€) = {⟨0, ((2nd β€˜π‘€)β€˜0)⟩})) β†’ ⟨0, ((2nd β€˜π‘€)β€˜0)⟩ = ⟨0, π‘‹βŸ©)
2625sneqd 4641 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ∧ (((2nd β€˜π‘€)β€˜0) ∈ 𝑉 ∧ (2nd β€˜π‘€) = {⟨0, ((2nd β€˜π‘€)β€˜0)⟩})) β†’ {⟨0, ((2nd β€˜π‘€)β€˜0)⟩} = {⟨0, π‘‹βŸ©})
2722, 26eqtrd 2773 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ∧ (((2nd β€˜π‘€)β€˜0) ∈ 𝑉 ∧ (2nd β€˜π‘€) = {⟨0, ((2nd β€˜π‘€)β€˜0)⟩})) β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©})
2827ex 414 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ ((((2nd β€˜π‘€)β€˜0) ∈ 𝑉 ∧ (2nd β€˜π‘€) = {⟨0, ((2nd β€˜π‘€)β€˜0)⟩}) β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©}))
2921, 28biimtrid 241 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ ((2nd β€˜π‘€):{0}βŸΆπ‘‰ β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©}))
3019, 29biimtrid 241 . . . . . . . . . . . . . . 15 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ ((2nd β€˜π‘€):(0...0)βŸΆπ‘‰ β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©}))
3117, 30sylbid 239 . . . . . . . . . . . . . 14 ((𝑋 ∈ 𝑉 ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ ((1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©}))
3231ex 414 . . . . . . . . . . . . 13 (𝑋 ∈ 𝑉 β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ ((1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©})))
3332com23 86 . . . . . . . . . . . 12 (𝑋 ∈ 𝑉 β†’ ((1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©})))
34333imp 1112 . . . . . . . . . . 11 ((𝑋 ∈ 𝑉 ∧ (1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©})
359, 34opeq12d 4882 . . . . . . . . . 10 ((𝑋 ∈ 𝑉 ∧ (1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩)
36353exp 1120 . . . . . . . . 9 (𝑋 ∈ 𝑉 β†’ ((1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩)))
37 eleq1 2822 . . . . . . . . . . 11 (𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ β†’ (𝑀 ∈ (ClWalksβ€˜πΊ) ↔ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ ∈ (ClWalksβ€˜πΊ)))
38 df-br 5150 . . . . . . . . . . 11 ((1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) ↔ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ ∈ (ClWalksβ€˜πΊ))
3937, 38bitr4di 289 . . . . . . . . . 10 (𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ β†’ (𝑀 ∈ (ClWalksβ€˜πΊ) ↔ (1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€)))
40 eqeq1 2737 . . . . . . . . . . 11 (𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ β†’ (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ ↔ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩))
4140imbi2d 341 . . . . . . . . . 10 (𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ β†’ ((((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩) ↔ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩)))
4239, 41imbi12d 345 . . . . . . . . 9 (𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ β†’ ((𝑀 ∈ (ClWalksβ€˜πΊ) β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩)) ↔ ((1st β€˜π‘€)(ClWalksβ€˜πΊ)(2nd β€˜π‘€) β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩))))
4336, 42imbitrrid 245 . . . . . . . 8 (𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ β†’ (𝑋 ∈ 𝑉 β†’ (𝑀 ∈ (ClWalksβ€˜πΊ) β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩))))
4443com23 86 . . . . . . 7 (𝑀 = ⟨(1st β€˜π‘€), (2nd β€˜π‘€)⟩ β†’ (𝑀 ∈ (ClWalksβ€˜πΊ) β†’ (𝑋 ∈ 𝑉 β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩))))
453, 44mpcom 38 . . . . . 6 (𝑀 ∈ (ClWalksβ€˜πΊ) β†’ (𝑋 ∈ 𝑉 β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩)))
4645com12 32 . . . . 5 (𝑋 ∈ 𝑉 β†’ (𝑀 ∈ (ClWalksβ€˜πΊ) β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) β†’ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩)))
4746impd 412 . . . 4 (𝑋 ∈ 𝑉 β†’ ((𝑀 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) β†’ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩))
48 eqidd 2734 . . . . . . 7 (𝑋 ∈ 𝑉 β†’ βˆ… = βˆ…)
4920a1i 11 . . . . . . . 8 (𝑋 ∈ 𝑉 β†’ 0 ∈ V)
50 snidg 4663 . . . . . . . 8 (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ {𝑋})
5149, 50fsnd 6877 . . . . . . 7 (𝑋 ∈ 𝑉 β†’ {⟨0, π‘‹βŸ©}:{0}⟢{𝑋})
52120clwlkv 29384 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ βˆ… = βˆ… ∧ {⟨0, π‘‹βŸ©}:{0}⟢{𝑋}) β†’ βˆ…(ClWalksβ€˜πΊ){⟨0, π‘‹βŸ©})
5348, 51, 52mpd3an23 1464 . . . . . 6 (𝑋 ∈ 𝑉 β†’ βˆ…(ClWalksβ€˜πΊ){⟨0, π‘‹βŸ©})
54 hash0 14327 . . . . . . 7 (β™―β€˜βˆ…) = 0
5554a1i 11 . . . . . 6 (𝑋 ∈ 𝑉 β†’ (β™―β€˜βˆ…) = 0)
56 fvsng 7178 . . . . . . 7 ((0 ∈ V ∧ 𝑋 ∈ 𝑉) β†’ ({⟨0, π‘‹βŸ©}β€˜0) = 𝑋)
5720, 56mpan 689 . . . . . 6 (𝑋 ∈ 𝑉 β†’ ({⟨0, π‘‹βŸ©}β€˜0) = 𝑋)
5853, 55, 57jca32 517 . . . . 5 (𝑋 ∈ 𝑉 β†’ (βˆ…(ClWalksβ€˜πΊ){⟨0, π‘‹βŸ©} ∧ ((β™―β€˜βˆ…) = 0 ∧ ({⟨0, π‘‹βŸ©}β€˜0) = 𝑋)))
59 eleq1 2822 . . . . . . 7 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ (𝑀 ∈ (ClWalksβ€˜πΊ) ↔ βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ ∈ (ClWalksβ€˜πΊ)))
60 df-br 5150 . . . . . . 7 (βˆ…(ClWalksβ€˜πΊ){⟨0, π‘‹βŸ©} ↔ βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ ∈ (ClWalksβ€˜πΊ))
6159, 60bitr4di 289 . . . . . 6 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ (𝑀 ∈ (ClWalksβ€˜πΊ) ↔ βˆ…(ClWalksβ€˜πΊ){⟨0, π‘‹βŸ©}))
62 0ex 5308 . . . . . . . . 9 βˆ… ∈ V
63 snex 5432 . . . . . . . . 9 {⟨0, π‘‹βŸ©} ∈ V
6462, 63op1std 7985 . . . . . . . 8 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ (1st β€˜π‘€) = βˆ…)
6564fveqeq2d 6900 . . . . . . 7 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ ((β™―β€˜(1st β€˜π‘€)) = 0 ↔ (β™―β€˜βˆ…) = 0))
6662, 63op2ndd 7986 . . . . . . . . 9 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ (2nd β€˜π‘€) = {⟨0, π‘‹βŸ©})
6766fveq1d 6894 . . . . . . . 8 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ ((2nd β€˜π‘€)β€˜0) = ({⟨0, π‘‹βŸ©}β€˜0))
6867eqeq1d 2735 . . . . . . 7 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ (((2nd β€˜π‘€)β€˜0) = 𝑋 ↔ ({⟨0, π‘‹βŸ©}β€˜0) = 𝑋))
6965, 68anbi12d 632 . . . . . 6 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ (((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋) ↔ ((β™―β€˜βˆ…) = 0 ∧ ({⟨0, π‘‹βŸ©}β€˜0) = 𝑋)))
7061, 69anbi12d 632 . . . . 5 (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ ((𝑀 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ↔ (βˆ…(ClWalksβ€˜πΊ){⟨0, π‘‹βŸ©} ∧ ((β™―β€˜βˆ…) = 0 ∧ ({⟨0, π‘‹βŸ©}β€˜0) = 𝑋))))
7158, 70syl5ibrcom 246 . . . 4 (𝑋 ∈ 𝑉 β†’ (𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩ β†’ (𝑀 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋))))
7247, 71impbid 211 . . 3 (𝑋 ∈ 𝑉 β†’ ((𝑀 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ↔ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩))
7372alrimiv 1931 . 2 (𝑋 ∈ 𝑉 β†’ βˆ€π‘€((𝑀 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ↔ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩))
74 rabeqsn 4670 . 2 ({𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩} ↔ βˆ€π‘€((𝑀 ∈ (ClWalksβ€˜πΊ) ∧ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)) ↔ 𝑀 = βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩))
7573, 74sylibr 233 1 (𝑋 ∈ 𝑉 β†’ {𝑀 ∈ (ClWalksβ€˜πΊ) ∣ ((β™―β€˜(1st β€˜π‘€)) = 0 ∧ ((2nd β€˜π‘€)β€˜0) = 𝑋)} = {βŸ¨βˆ…, {⟨0, π‘‹βŸ©}⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088  βˆ€wal 1540   = wceq 1542   ∈ wcel 2107  {crab 3433  Vcvv 3475  βˆ…c0 4323  {csn 4629  βŸ¨cop 4635   class class class wbr 5149  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  0cc0 11110  ...cfz 13484  β™―chash 14290  Vtxcvtx 28256  Walkscwlks 28853  ClWalkscclwlks 29027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-wlks 28856  df-clwlks 29028
This theorem is referenced by:  numclwlk1lem1  29622
  Copyright terms: Public domain W3C validator