MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl0 Structured version   Visualization version   GIF version

Theorem wlkl0 30396
Description: There is exactly one walk of length 0 on each vertex 𝑋. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkl0 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋

Proof of Theorem wlkl0
StepHypRef Expression
1 clwlkwlk 29808 . . . . . . . 8 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 ∈ (Walks‘𝐺))
2 wlkop 29661 . . . . . . . 8 (𝑤 ∈ (Walks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
31, 2syl 17 . . . . . . 7 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
4 fvex 6920 . . . . . . . . . . . . . . 15 (1st𝑤) ∈ V
5 hasheq0 14399 . . . . . . . . . . . . . . 15 ((1st𝑤) ∈ V → ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅))
64, 5ax-mp 5 . . . . . . . . . . . . . 14 ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅)
76biimpi 216 . . . . . . . . . . . . 13 ((♯‘(1st𝑤)) = 0 → (1st𝑤) = ∅)
87adantr 480 . . . . . . . . . . . 12 (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (1st𝑤) = ∅)
983ad2ant3 1134 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
108adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
1110breq1d 5158 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ∅(ClWalks‘𝐺)(2nd𝑤)))
12 clwlknon2num.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtx‘𝐺)
13121vgrex 29034 . . . . . . . . . . . . . . . . . 18 (𝑋𝑉𝐺 ∈ V)
14120clwlk 30159 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ V → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝑋𝑉 → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1615adantr 480 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1711, 16bitrd 279 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
18 fz0sn 13664 . . . . . . . . . . . . . . . . 17 (0...0) = {0}
1918feq2i 6729 . . . . . . . . . . . . . . . 16 ((2nd𝑤):(0...0)⟶𝑉 ↔ (2nd𝑤):{0}⟶𝑉)
20 c0ex 11253 . . . . . . . . . . . . . . . . . 18 0 ∈ V
2120fsn2 7156 . . . . . . . . . . . . . . . . 17 ((2nd𝑤):{0}⟶𝑉 ↔ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}))
22 simprr 773 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})
23 simprr 773 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤)‘0) = 𝑋)
2423adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ((2nd𝑤)‘0) = 𝑋)
2524opeq2d 4885 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ⟨0, ((2nd𝑤)‘0)⟩ = ⟨0, 𝑋⟩)
2625sneqd 4643 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → {⟨0, ((2nd𝑤)‘0)⟩} = {⟨0, 𝑋⟩})
2722, 26eqtrd 2775 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, 𝑋⟩})
2827ex 412 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}) → (2nd𝑤) = {⟨0, 𝑋⟩}))
2921, 28biimtrid 242 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):{0}⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3019, 29biimtrid 242 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):(0...0)⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3117, 30sylbid 240 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩}))
3231ex 412 . . . . . . . . . . . . 13 (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩})))
3332com23 86 . . . . . . . . . . . 12 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (2nd𝑤) = {⟨0, 𝑋⟩})))
34333imp 1110 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (2nd𝑤) = {⟨0, 𝑋⟩})
359, 34opeq12d 4886 . . . . . . . . . 10 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)
36353exp 1118 . . . . . . . . 9 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
37 eleq1 2827 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺)))
38 df-br 5149 . . . . . . . . . . 11 ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺))
3937, 38bitr4di 289 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤)))
40 eqeq1 2739 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ ↔ ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))
4140imbi2d 340 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩) ↔ (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4239, 41imbi12d 344 . . . . . . . . 9 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)) ↔ ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4336, 42imbitrrid 246 . . . . . . . 8 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4443com23 86 . . . . . . 7 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
453, 44mpcom 38 . . . . . 6 (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4645com12 32 . . . . 5 (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4746impd 410 . . . 4 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
48 eqidd 2736 . . . . . . 7 (𝑋𝑉 → ∅ = ∅)
4920a1i 11 . . . . . . . 8 (𝑋𝑉 → 0 ∈ V)
50 snidg 4665 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
5149, 50fsnd 6892 . . . . . . 7 (𝑋𝑉 → {⟨0, 𝑋⟩}:{0}⟶{𝑋})
52120clwlkv 30160 . . . . . . 7 ((𝑋𝑉 ∧ ∅ = ∅ ∧ {⟨0, 𝑋⟩}:{0}⟶{𝑋}) → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
5348, 51, 52mpd3an23 1462 . . . . . 6 (𝑋𝑉 → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
54 hash0 14403 . . . . . . 7 (♯‘∅) = 0
5554a1i 11 . . . . . 6 (𝑋𝑉 → (♯‘∅) = 0)
56 fvsng 7200 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝑉) → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5720, 56mpan 690 . . . . . 6 (𝑋𝑉 → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5853, 55, 57jca32 515 . . . . 5 (𝑋𝑉 → (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
59 eleq1 2827 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺)))
60 df-br 5149 . . . . . . 7 (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺))
6159, 60bitr4di 289 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ∅(ClWalks‘𝐺){⟨0, 𝑋⟩}))
62 0ex 5313 . . . . . . . . 9 ∅ ∈ V
63 snex 5442 . . . . . . . . 9 {⟨0, 𝑋⟩} ∈ V
6462, 63op1std 8023 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (1st𝑤) = ∅)
6564fveqeq2d 6915 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((♯‘(1st𝑤)) = 0 ↔ (♯‘∅) = 0))
6662, 63op2ndd 8024 . . . . . . . . 9 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (2nd𝑤) = {⟨0, 𝑋⟩})
6766fveq1d 6909 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((2nd𝑤)‘0) = ({⟨0, 𝑋⟩}‘0))
6867eqeq1d 2737 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((2nd𝑤)‘0) = 𝑋 ↔ ({⟨0, 𝑋⟩}‘0) = 𝑋))
6965, 68anbi12d 632 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
7061, 69anbi12d 632 . . . . 5 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋))))
7158, 70syl5ibrcom 247 . . . 4 (𝑋𝑉 → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋))))
7247, 71impbid 212 . . 3 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7372alrimiv 1925 . 2 (𝑋𝑉 → ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
74 rabeqsn 4672 . 2 ({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩} ↔ ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7573, 74sylibr 234 1 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  c0 4339  {csn 4631  cop 4637   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  0cc0 11153  ...cfz 13544  chash 14366  Vtxcvtx 29028  Walkscwlks 29629  ClWalkscclwlks 29803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-wlks 29632  df-clwlks 29804
This theorem is referenced by:  numclwlk1lem1  30398
  Copyright terms: Public domain W3C validator