Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkl0 Structured version   Visualization version   GIF version

Theorem wlkl0 28060
 Description: There is exactly one walk of length 0 on each vertex 𝑋. (Contributed by AV, 4-Jun-2022.)
Hypothesis
Ref Expression
clwlknon2num.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wlkl0 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
Distinct variable groups:   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋

Proof of Theorem wlkl0
StepHypRef Expression
1 clwlkwlk 27470 . . . . . . . 8 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 ∈ (Walks‘𝐺))
2 wlkop 27323 . . . . . . . 8 (𝑤 ∈ (Walks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
31, 2syl 17 . . . . . . 7 (𝑤 ∈ (ClWalks‘𝐺) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
4 fvex 6680 . . . . . . . . . . . . . . 15 (1st𝑤) ∈ V
5 hasheq0 13714 . . . . . . . . . . . . . . 15 ((1st𝑤) ∈ V → ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅))
64, 5ax-mp 5 . . . . . . . . . . . . . 14 ((♯‘(1st𝑤)) = 0 ↔ (1st𝑤) = ∅)
76biimpi 217 . . . . . . . . . . . . 13 ((♯‘(1st𝑤)) = 0 → (1st𝑤) = ∅)
87adantr 481 . . . . . . . . . . . 12 (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (1st𝑤) = ∅)
983ad2ant3 1129 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
108adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (1st𝑤) = ∅)
1110breq1d 5073 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ∅(ClWalks‘𝐺)(2nd𝑤)))
12 clwlknon2num.v . . . . . . . . . . . . . . . . . . 19 𝑉 = (Vtx‘𝐺)
13121vgrex 26701 . . . . . . . . . . . . . . . . . 18 (𝑋𝑉𝐺 ∈ V)
14120clwlk 27823 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ V → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝑋𝑉 → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1615adantr 481 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (∅(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
1711, 16bitrd 280 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ (2nd𝑤):(0...0)⟶𝑉))
18 fz0sn 12997 . . . . . . . . . . . . . . . . 17 (0...0) = {0}
1918feq2i 6503 . . . . . . . . . . . . . . . 16 ((2nd𝑤):(0...0)⟶𝑉 ↔ (2nd𝑤):{0}⟶𝑉)
20 c0ex 10624 . . . . . . . . . . . . . . . . . 18 0 ∈ V
2120fsn2 6894 . . . . . . . . . . . . . . . . 17 ((2nd𝑤):{0}⟶𝑉 ↔ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}))
22 simprr 769 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})
23 simprr 769 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤)‘0) = 𝑋)
2423adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ((2nd𝑤)‘0) = 𝑋)
2524opeq2d 4809 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → ⟨0, ((2nd𝑤)‘0)⟩ = ⟨0, 𝑋⟩)
2625sneqd 4576 . . . . . . . . . . . . . . . . . . 19 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → {⟨0, ((2nd𝑤)‘0)⟩} = {⟨0, 𝑋⟩})
2722, 26eqtrd 2861 . . . . . . . . . . . . . . . . . 18 (((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ∧ (((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩})) → (2nd𝑤) = {⟨0, 𝑋⟩})
2827ex 413 . . . . . . . . . . . . . . . . 17 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((((2nd𝑤)‘0) ∈ 𝑉 ∧ (2nd𝑤) = {⟨0, ((2nd𝑤)‘0)⟩}) → (2nd𝑤) = {⟨0, 𝑋⟩}))
2921, 28syl5bi 243 . . . . . . . . . . . . . . . 16 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):{0}⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3019, 29syl5bi 243 . . . . . . . . . . . . . . 15 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((2nd𝑤):(0...0)⟶𝑉 → (2nd𝑤) = {⟨0, 𝑋⟩}))
3117, 30sylbid 241 . . . . . . . . . . . . . 14 ((𝑋𝑉 ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩}))
3231ex 413 . . . . . . . . . . . . 13 (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (2nd𝑤) = {⟨0, 𝑋⟩})))
3332com23 86 . . . . . . . . . . . 12 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → (2nd𝑤) = {⟨0, 𝑋⟩})))
34333imp 1105 . . . . . . . . . . 11 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → (2nd𝑤) = {⟨0, 𝑋⟩})
359, 34opeq12d 4810 . . . . . . . . . 10 ((𝑋𝑉 ∧ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)
36353exp 1113 . . . . . . . . 9 (𝑋𝑉 → ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
37 eleq1 2905 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺)))
38 df-br 5064 . . . . . . . . . . 11 ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) ↔ ⟨(1st𝑤), (2nd𝑤)⟩ ∈ (ClWalks‘𝐺))
3937, 38syl6bbr 290 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ (1st𝑤)(ClWalks‘𝐺)(2nd𝑤)))
40 eqeq1 2830 . . . . . . . . . . 11 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ ↔ ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))
4140imbi2d 342 . . . . . . . . . 10 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩) ↔ (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4239, 41imbi12d 346 . . . . . . . . 9 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → ((𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)) ↔ ((1st𝑤)(ClWalks‘𝐺)(2nd𝑤) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → ⟨(1st𝑤), (2nd𝑤)⟩ = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4336, 42syl5ibr 247 . . . . . . . 8 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
4443com23 86 . . . . . . 7 (𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩ → (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))))
453, 44mpcom 38 . . . . . 6 (𝑤 ∈ (ClWalks‘𝐺) → (𝑋𝑉 → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4645com12 32 . . . . 5 (𝑋𝑉 → (𝑤 ∈ (ClWalks‘𝐺) → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩)))
4746impd 411 . . . 4 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) → 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
48 eqidd 2827 . . . . . . 7 (𝑋𝑉 → ∅ = ∅)
4920a1i 11 . . . . . . . 8 (𝑋𝑉 → 0 ∈ V)
50 snidg 4596 . . . . . . . 8 (𝑋𝑉𝑋 ∈ {𝑋})
5149, 50fsnd 6654 . . . . . . 7 (𝑋𝑉 → {⟨0, 𝑋⟩}:{0}⟶{𝑋})
52120clwlkv 27824 . . . . . . 7 ((𝑋𝑉 ∧ ∅ = ∅ ∧ {⟨0, 𝑋⟩}:{0}⟶{𝑋}) → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
5348, 51, 52mpd3an23 1456 . . . . . 6 (𝑋𝑉 → ∅(ClWalks‘𝐺){⟨0, 𝑋⟩})
54 hash0 13718 . . . . . . 7 (♯‘∅) = 0
5554a1i 11 . . . . . 6 (𝑋𝑉 → (♯‘∅) = 0)
56 fvsng 6938 . . . . . . 7 ((0 ∈ V ∧ 𝑋𝑉) → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5720, 56mpan 686 . . . . . 6 (𝑋𝑉 → ({⟨0, 𝑋⟩}‘0) = 𝑋)
5853, 55, 57jca32 516 . . . . 5 (𝑋𝑉 → (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
59 eleq1 2905 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺)))
60 df-br 5064 . . . . . . 7 (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ↔ ⟨∅, {⟨0, 𝑋⟩}⟩ ∈ (ClWalks‘𝐺))
6159, 60syl6bbr 290 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ↔ ∅(ClWalks‘𝐺){⟨0, 𝑋⟩}))
62 0ex 5208 . . . . . . . . 9 ∅ ∈ V
63 snex 5328 . . . . . . . . 9 {⟨0, 𝑋⟩} ∈ V
6462, 63op1std 7690 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (1st𝑤) = ∅)
6564fveqeq2d 6675 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((♯‘(1st𝑤)) = 0 ↔ (♯‘∅) = 0))
6662, 63op2ndd 7691 . . . . . . . . 9 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (2nd𝑤) = {⟨0, 𝑋⟩})
6766fveq1d 6669 . . . . . . . 8 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((2nd𝑤)‘0) = ({⟨0, 𝑋⟩}‘0))
6867eqeq1d 2828 . . . . . . 7 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((2nd𝑤)‘0) = 𝑋 ↔ ({⟨0, 𝑋⟩}‘0) = 𝑋))
6965, 68anbi12d 630 . . . . . 6 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋) ↔ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋)))
7061, 69anbi12d 630 . . . . 5 (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ (∅(ClWalks‘𝐺){⟨0, 𝑋⟩} ∧ ((♯‘∅) = 0 ∧ ({⟨0, 𝑋⟩}‘0) = 𝑋))))
7158, 70syl5ibrcom 248 . . . 4 (𝑋𝑉 → (𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩ → (𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋))))
7247, 71impbid 213 . . 3 (𝑋𝑉 → ((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7372alrimiv 1921 . 2 (𝑋𝑉 → ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
74 rabeqsn 4603 . 2 ({𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩} ↔ ∀𝑤((𝑤 ∈ (ClWalks‘𝐺) ∧ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)) ↔ 𝑤 = ⟨∅, {⟨0, 𝑋⟩}⟩))
7573, 74sylibr 235 1 (𝑋𝑉 → {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 0 ∧ ((2nd𝑤)‘0) = 𝑋)} = {⟨∅, {⟨0, 𝑋⟩}⟩})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∧ w3a 1081  ∀wal 1528   = wceq 1530   ∈ wcel 2107  {crab 3147  Vcvv 3500  ∅c0 4295  {csn 4564  ⟨cop 4570   class class class wbr 5063  ⟶wf 6348  ‘cfv 6352  (class class class)co 7148  1st c1st 7678  2nd c2nd 7679  0cc0 10526  ...cfz 12882  ♯chash 13680  Vtxcvtx 26695  Walkscwlks 27292  ClWalkscclwlks 27465 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ifp 1057  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-wlks 27295  df-clwlks 27466 This theorem is referenced by:  numclwlk1lem1  28062
 Copyright terms: Public domain W3C validator