MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  made0 Structured version   Visualization version   GIF version

Theorem made0 27927
Description: The only surreal made on day is 0s. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
made0 ( M ‘∅) = { 0s }

Proof of Theorem made0
Dummy variables 𝑥 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elon 6440 . . 3 ∅ ∈ On
2 madeval2 27907 . . 3 (∅ ∈ On → ( M ‘∅) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
31, 2ax-mp 5 . 2 ( M ‘∅) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}
4 rabeqsn 4672 . . 3 ({𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} = { 0s } ↔ ∀𝑥((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ 𝑥 = 0s ))
5 0elpw 5362 . . . . . . . 8 ∅ ∈ 𝒫 No
6 nulssgt 27858 . . . . . . . 8 (∅ ∈ 𝒫 No → ∅ <<s ∅)
75, 6ax-mp 5 . . . . . . 7 ∅ <<s ∅
8 ima0 6097 . . . . . . . . . . . . 13 ( M “ ∅) = ∅
98unieqi 4924 . . . . . . . . . . . 12 ( M “ ∅) =
10 uni0 4940 . . . . . . . . . . . 12 ∅ = ∅
119, 10eqtri 2763 . . . . . . . . . . 11 ( M “ ∅) = ∅
1211pweqi 4621 . . . . . . . . . 10 𝒫 ( M “ ∅) = 𝒫 ∅
13 pw0 4817 . . . . . . . . . 10 𝒫 ∅ = {∅}
1412, 13eqtri 2763 . . . . . . . . 9 𝒫 ( M “ ∅) = {∅}
1514rexeqi 3323 . . . . . . . 8 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅}∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
1614rexeqi 3323 . . . . . . . . 9 (∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
1716rexbii 3092 . . . . . . . 8 (∃𝑙 ∈ {∅}∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
18 0ex 5313 . . . . . . . . . . 11 ∅ ∈ V
19 breq2 5152 . . . . . . . . . . . 12 (𝑟 = ∅ → (𝑙 <<s 𝑟𝑙 <<s ∅))
20 oveq2 7439 . . . . . . . . . . . . 13 (𝑟 = ∅ → (𝑙 |s 𝑟) = (𝑙 |s ∅))
2120eqeq1d 2737 . . . . . . . . . . . 12 (𝑟 = ∅ → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s ∅) = 𝑥))
2219, 21anbi12d 632 . . . . . . . . . . 11 (𝑟 = ∅ → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥)))
2318, 22rexsn 4687 . . . . . . . . . 10 (∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥))
2423rexbii 3092 . . . . . . . . 9 (∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅} (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥))
25 breq1 5151 . . . . . . . . . . 11 (𝑙 = ∅ → (𝑙 <<s ∅ ↔ ∅ <<s ∅))
26 oveq1 7438 . . . . . . . . . . . 12 (𝑙 = ∅ → (𝑙 |s ∅) = (∅ |s ∅))
2726eqeq1d 2737 . . . . . . . . . . 11 (𝑙 = ∅ → ((𝑙 |s ∅) = 𝑥 ↔ (∅ |s ∅) = 𝑥))
2825, 27anbi12d 632 . . . . . . . . . 10 (𝑙 = ∅ → ((𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥)))
2918, 28rexsn 4687 . . . . . . . . 9 (∃𝑙 ∈ {∅} (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
3024, 29bitri 275 . . . . . . . 8 (∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
3115, 17, 303bitri 297 . . . . . . 7 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
327, 31mpbiran 709 . . . . . 6 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ |s ∅) = 𝑥)
33 df-0s 27884 . . . . . . 7 0s = (∅ |s ∅)
3433eqeq1i 2740 . . . . . 6 ( 0s = 𝑥 ↔ (∅ |s ∅) = 𝑥)
35 eqcom 2742 . . . . . 6 ( 0s = 𝑥𝑥 = 0s )
3632, 34, 353bitr2i 299 . . . . 5 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ 𝑥 = 0s )
3736anbi2i 623 . . . 4 ((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ (𝑥 No 𝑥 = 0s ))
38 0sno 27886 . . . . . 6 0s No
39 eleq1 2827 . . . . . 6 (𝑥 = 0s → (𝑥 No ↔ 0s No ))
4038, 39mpbiri 258 . . . . 5 (𝑥 = 0s𝑥 No )
4140pm4.71ri 560 . . . 4 (𝑥 = 0s ↔ (𝑥 No 𝑥 = 0s ))
4237, 41bitr4i 278 . . 3 ((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ 𝑥 = 0s )
434, 42mpgbir 1796 . 2 {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} = { 0s }
443, 43eqtri 2763 1 ( M ‘∅) = { 0s }
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912   class class class wbr 5148  cima 5692  Oncon0 6386  cfv 6563  (class class class)co 7431   No csur 27699   <<s csslt 27840   |s cscut 27842   0s c0s 27882   M cmade 27896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901
This theorem is referenced by:  new0  27928  old1  27929
  Copyright terms: Public domain W3C validator