MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  made0 Structured version   Visualization version   GIF version

Theorem made0 27816
Description: The only surreal made on day is 0s. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
made0 ( M ‘∅) = { 0s }

Proof of Theorem made0
Dummy variables 𝑥 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elon 6361 . . 3 ∅ ∈ On
2 madeval2 27792 . . 3 (∅ ∈ On → ( M ‘∅) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
31, 2ax-mp 5 . 2 ( M ‘∅) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}
4 rabeqsn 4620 . . 3 ({𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} = { 0s } ↔ ∀𝑥((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ 𝑥 = 0s ))
5 0elpw 5294 . . . . . . . 8 ∅ ∈ 𝒫 No
6 nulssgt 27737 . . . . . . . 8 (∅ ∈ 𝒫 No → ∅ <<s ∅)
75, 6ax-mp 5 . . . . . . 7 ∅ <<s ∅
8 ima0 6026 . . . . . . . . . . . . 13 ( M “ ∅) = ∅
98unieqi 4871 . . . . . . . . . . . 12 ( M “ ∅) =
10 uni0 4887 . . . . . . . . . . . 12 ∅ = ∅
119, 10eqtri 2754 . . . . . . . . . . 11 ( M “ ∅) = ∅
1211pweqi 4566 . . . . . . . . . 10 𝒫 ( M “ ∅) = 𝒫 ∅
13 pw0 4764 . . . . . . . . . 10 𝒫 ∅ = {∅}
1412, 13eqtri 2754 . . . . . . . . 9 𝒫 ( M “ ∅) = {∅}
1514rexeqi 3291 . . . . . . . 8 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅}∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
1614rexeqi 3291 . . . . . . . . 9 (∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
1716rexbii 3079 . . . . . . . 8 (∃𝑙 ∈ {∅}∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
18 0ex 5245 . . . . . . . . . . 11 ∅ ∈ V
19 breq2 5095 . . . . . . . . . . . 12 (𝑟 = ∅ → (𝑙 <<s 𝑟𝑙 <<s ∅))
20 oveq2 7354 . . . . . . . . . . . . 13 (𝑟 = ∅ → (𝑙 |s 𝑟) = (𝑙 |s ∅))
2120eqeq1d 2733 . . . . . . . . . . . 12 (𝑟 = ∅ → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s ∅) = 𝑥))
2219, 21anbi12d 632 . . . . . . . . . . 11 (𝑟 = ∅ → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥)))
2318, 22rexsn 4635 . . . . . . . . . 10 (∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥))
2423rexbii 3079 . . . . . . . . 9 (∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅} (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥))
25 breq1 5094 . . . . . . . . . . 11 (𝑙 = ∅ → (𝑙 <<s ∅ ↔ ∅ <<s ∅))
26 oveq1 7353 . . . . . . . . . . . 12 (𝑙 = ∅ → (𝑙 |s ∅) = (∅ |s ∅))
2726eqeq1d 2733 . . . . . . . . . . 11 (𝑙 = ∅ → ((𝑙 |s ∅) = 𝑥 ↔ (∅ |s ∅) = 𝑥))
2825, 27anbi12d 632 . . . . . . . . . 10 (𝑙 = ∅ → ((𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥)))
2918, 28rexsn 4635 . . . . . . . . 9 (∃𝑙 ∈ {∅} (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
3024, 29bitri 275 . . . . . . . 8 (∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
3115, 17, 303bitri 297 . . . . . . 7 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
327, 31mpbiran 709 . . . . . 6 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ |s ∅) = 𝑥)
33 df-0s 27766 . . . . . . 7 0s = (∅ |s ∅)
3433eqeq1i 2736 . . . . . 6 ( 0s = 𝑥 ↔ (∅ |s ∅) = 𝑥)
35 eqcom 2738 . . . . . 6 ( 0s = 𝑥𝑥 = 0s )
3632, 34, 353bitr2i 299 . . . . 5 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ 𝑥 = 0s )
3736anbi2i 623 . . . 4 ((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ (𝑥 No 𝑥 = 0s ))
38 0sno 27768 . . . . . 6 0s No
39 eleq1 2819 . . . . . 6 (𝑥 = 0s → (𝑥 No ↔ 0s No ))
4038, 39mpbiri 258 . . . . 5 (𝑥 = 0s𝑥 No )
4140pm4.71ri 560 . . . 4 (𝑥 = 0s ↔ (𝑥 No 𝑥 = 0s ))
4237, 41bitr4i 278 . . 3 ((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ 𝑥 = 0s )
434, 42mpgbir 1800 . 2 {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} = { 0s }
443, 43eqtri 2754 1 ( M ‘∅) = { 0s }
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859   class class class wbr 5091  cima 5619  Oncon0 6306  cfv 6481  (class class class)co 7346   No csur 27576   <<s csslt 27718   |s cscut 27720   0s c0s 27764   M cmade 27781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27579  df-slt 27580  df-bday 27581  df-sslt 27719  df-scut 27721  df-0s 27766  df-made 27786
This theorem is referenced by:  new0  27817  old1  27818
  Copyright terms: Public domain W3C validator