Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  made0 Structured version   Visualization version   GIF version

Theorem made0 33649
Description: The only surreal made on day is 0s. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
made0 ( M ‘∅) = { 0s }

Proof of Theorem made0
Dummy variables 𝑥 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elon 6227 . . 3 ∅ ∈ On
2 madeval2 33632 . . 3 (∅ ∈ On → ( M ‘∅) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
31, 2ax-mp 5 . 2 ( M ‘∅) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}
4 rabeqsn 4566 . . 3 ({𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} = { 0s } ↔ ∀𝑥((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ 𝑥 = 0s ))
5 0elpw 5228 . . . . . . . 8 ∅ ∈ 𝒫 No
6 nulssgt 33588 . . . . . . . 8 (∅ ∈ 𝒫 No → ∅ <<s ∅)
75, 6ax-mp 5 . . . . . . 7 ∅ <<s ∅
8 ima0 5922 . . . . . . . . . . . . 13 ( M “ ∅) = ∅
98unieqi 4814 . . . . . . . . . . . 12 ( M “ ∅) =
10 uni0 4831 . . . . . . . . . . . 12 ∅ = ∅
119, 10eqtri 2781 . . . . . . . . . . 11 ( M “ ∅) = ∅
1211pweqi 4515 . . . . . . . . . 10 𝒫 ( M “ ∅) = 𝒫 ∅
13 pw0 4705 . . . . . . . . . 10 𝒫 ∅ = {∅}
1412, 13eqtri 2781 . . . . . . . . 9 𝒫 ( M “ ∅) = {∅}
1514rexeqi 3328 . . . . . . . 8 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅}∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
1614rexeqi 3328 . . . . . . . . 9 (∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
1716rexbii 3175 . . . . . . . 8 (∃𝑙 ∈ {∅}∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
18 0ex 5181 . . . . . . . . . . 11 ∅ ∈ V
19 breq2 5040 . . . . . . . . . . . 12 (𝑟 = ∅ → (𝑙 <<s 𝑟𝑙 <<s ∅))
20 oveq2 7164 . . . . . . . . . . . . 13 (𝑟 = ∅ → (𝑙 |s 𝑟) = (𝑙 |s ∅))
2120eqeq1d 2760 . . . . . . . . . . . 12 (𝑟 = ∅ → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s ∅) = 𝑥))
2219, 21anbi12d 633 . . . . . . . . . . 11 (𝑟 = ∅ → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥)))
2318, 22rexsn 4580 . . . . . . . . . 10 (∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥))
2423rexbii 3175 . . . . . . . . 9 (∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅} (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥))
25 breq1 5039 . . . . . . . . . . 11 (𝑙 = ∅ → (𝑙 <<s ∅ ↔ ∅ <<s ∅))
26 oveq1 7163 . . . . . . . . . . . 12 (𝑙 = ∅ → (𝑙 |s ∅) = (∅ |s ∅))
2726eqeq1d 2760 . . . . . . . . . . 11 (𝑙 = ∅ → ((𝑙 |s ∅) = 𝑥 ↔ (∅ |s ∅) = 𝑥))
2825, 27anbi12d 633 . . . . . . . . . 10 (𝑙 = ∅ → ((𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥)))
2918, 28rexsn 4580 . . . . . . . . 9 (∃𝑙 ∈ {∅} (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
3024, 29bitri 278 . . . . . . . 8 (∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
3115, 17, 303bitri 300 . . . . . . 7 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
327, 31mpbiran 708 . . . . . 6 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ |s ∅) = 𝑥)
33 df-0s 33613 . . . . . . 7 0s = (∅ |s ∅)
3433eqeq1i 2763 . . . . . 6 ( 0s = 𝑥 ↔ (∅ |s ∅) = 𝑥)
35 eqcom 2765 . . . . . 6 ( 0s = 𝑥𝑥 = 0s )
3632, 34, 353bitr2i 302 . . . . 5 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ 𝑥 = 0s )
3736anbi2i 625 . . . 4 ((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ (𝑥 No 𝑥 = 0s ))
38 0sno 33615 . . . . . 6 0s ∈ No
39 eleq1 2839 . . . . . 6 (𝑥 = 0s → (𝑥 No ↔ 0s ∈ No ))
4038, 39mpbiri 261 . . . . 5 (𝑥 = 0s → 𝑥 No )
4140pm4.71ri 564 . . . 4 (𝑥 = 0s ↔ (𝑥 No 𝑥 = 0s ))
4237, 41bitr4i 281 . . 3 ((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ 𝑥 = 0s )
434, 42mpgbir 1801 . 2 {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} = { 0s }
443, 43eqtri 2781 1 ( M ‘∅) = { 0s }
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3071  {crab 3074  c0 4227  𝒫 cpw 4497  {csn 4525   cuni 4801   class class class wbr 5036  cima 5531  Oncon0 6174  cfv 6340  (class class class)co 7156   No csur 33441   <<s csslt 33573   |s cscut 33575   0s c0s 33611   M cmade 33621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7963  df-recs 8024  df-1o 8118  df-2o 8119  df-no 33444  df-slt 33445  df-bday 33446  df-sslt 33574  df-scut 33576  df-0s 33613  df-made 33626
This theorem is referenced by:  new0  33650
  Copyright terms: Public domain W3C validator