MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  made0 Structured version   Visualization version   GIF version

Theorem made0 27930
Description: The only surreal made on day is 0s. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
made0 ( M ‘∅) = { 0s }

Proof of Theorem made0
Dummy variables 𝑥 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elon 6449 . . 3 ∅ ∈ On
2 madeval2 27910 . . 3 (∅ ∈ On → ( M ‘∅) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
31, 2ax-mp 5 . 2 ( M ‘∅) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}
4 rabeqsn 4689 . . 3 ({𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} = { 0s } ↔ ∀𝑥((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ 𝑥 = 0s ))
5 0elpw 5374 . . . . . . . 8 ∅ ∈ 𝒫 No
6 nulssgt 27861 . . . . . . . 8 (∅ ∈ 𝒫 No → ∅ <<s ∅)
75, 6ax-mp 5 . . . . . . 7 ∅ <<s ∅
8 ima0 6106 . . . . . . . . . . . . 13 ( M “ ∅) = ∅
98unieqi 4943 . . . . . . . . . . . 12 ( M “ ∅) =
10 uni0 4959 . . . . . . . . . . . 12 ∅ = ∅
119, 10eqtri 2768 . . . . . . . . . . 11 ( M “ ∅) = ∅
1211pweqi 4638 . . . . . . . . . 10 𝒫 ( M “ ∅) = 𝒫 ∅
13 pw0 4837 . . . . . . . . . 10 𝒫 ∅ = {∅}
1412, 13eqtri 2768 . . . . . . . . 9 𝒫 ( M “ ∅) = {∅}
1514rexeqi 3333 . . . . . . . 8 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅}∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
1614rexeqi 3333 . . . . . . . . 9 (∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
1716rexbii 3100 . . . . . . . 8 (∃𝑙 ∈ {∅}∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥))
18 0ex 5325 . . . . . . . . . . 11 ∅ ∈ V
19 breq2 5170 . . . . . . . . . . . 12 (𝑟 = ∅ → (𝑙 <<s 𝑟𝑙 <<s ∅))
20 oveq2 7456 . . . . . . . . . . . . 13 (𝑟 = ∅ → (𝑙 |s 𝑟) = (𝑙 |s ∅))
2120eqeq1d 2742 . . . . . . . . . . . 12 (𝑟 = ∅ → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s ∅) = 𝑥))
2219, 21anbi12d 631 . . . . . . . . . . 11 (𝑟 = ∅ → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥)))
2318, 22rexsn 4706 . . . . . . . . . 10 (∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥))
2423rexbii 3100 . . . . . . . . 9 (∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ {∅} (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥))
25 breq1 5169 . . . . . . . . . . 11 (𝑙 = ∅ → (𝑙 <<s ∅ ↔ ∅ <<s ∅))
26 oveq1 7455 . . . . . . . . . . . 12 (𝑙 = ∅ → (𝑙 |s ∅) = (∅ |s ∅))
2726eqeq1d 2742 . . . . . . . . . . 11 (𝑙 = ∅ → ((𝑙 |s ∅) = 𝑥 ↔ (∅ |s ∅) = 𝑥))
2825, 27anbi12d 631 . . . . . . . . . 10 (𝑙 = ∅ → ((𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥)))
2918, 28rexsn 4706 . . . . . . . . 9 (∃𝑙 ∈ {∅} (𝑙 <<s ∅ ∧ (𝑙 |s ∅) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
3024, 29bitri 275 . . . . . . . 8 (∃𝑙 ∈ {∅}∃𝑟 ∈ {∅} (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
3115, 17, 303bitri 297 . . . . . . 7 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ <<s ∅ ∧ (∅ |s ∅) = 𝑥))
327, 31mpbiran 708 . . . . . 6 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (∅ |s ∅) = 𝑥)
33 df-0s 27887 . . . . . . 7 0s = (∅ |s ∅)
3433eqeq1i 2745 . . . . . 6 ( 0s = 𝑥 ↔ (∅ |s ∅) = 𝑥)
35 eqcom 2747 . . . . . 6 ( 0s = 𝑥𝑥 = 0s )
3632, 34, 353bitr2i 299 . . . . 5 (∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ 𝑥 = 0s )
3736anbi2i 622 . . . 4 ((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ (𝑥 No 𝑥 = 0s ))
38 0sno 27889 . . . . . 6 0s No
39 eleq1 2832 . . . . . 6 (𝑥 = 0s → (𝑥 No ↔ 0s No ))
4038, 39mpbiri 258 . . . . 5 (𝑥 = 0s𝑥 No )
4140pm4.71ri 560 . . . 4 (𝑥 = 0s ↔ (𝑥 No 𝑥 = 0s ))
4237, 41bitr4i 278 . . 3 ((𝑥 No ∧ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)) ↔ 𝑥 = 0s )
434, 42mpgbir 1797 . 2 {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ ∅)∃𝑟 ∈ 𝒫 ( M “ ∅)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} = { 0s }
443, 43eqtri 2768 1 ( M ‘∅) = { 0s }
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   class class class wbr 5166  cima 5703  Oncon0 6395  cfv 6573  (class class class)co 7448   No csur 27702   <<s csslt 27843   |s cscut 27845   0s c0s 27885   M cmade 27899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904
This theorem is referenced by:  new0  27931  old1  27932
  Copyright terms: Public domain W3C validator