| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabsssn | Structured version Visualization version GIF version | ||
| Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019.) |
| Ref | Expression |
|---|---|
| rabsssn | ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → 𝑥 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3409 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
| 2 | df-sn 4593 | . . 3 ⊢ {𝑋} = {𝑥 ∣ 𝑥 = 𝑋} | |
| 3 | 1, 2 | sseq12i 3980 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋} ↔ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 = 𝑋}) |
| 4 | ss2ab 4028 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 = 𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → 𝑥 = 𝑋)) | |
| 5 | impexp 450 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝜑) → 𝑥 = 𝑋) ↔ (𝑥 ∈ 𝑉 → (𝜑 → 𝑥 = 𝑋))) | |
| 6 | 5 | albii 1819 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → 𝑥 = 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → 𝑥 = 𝑋))) |
| 7 | df-ral 3046 | . . 3 ⊢ (∀𝑥 ∈ 𝑉 (𝜑 → 𝑥 = 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → 𝑥 = 𝑋))) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → 𝑥 = 𝑋) ↔ ∀𝑥 ∈ 𝑉 (𝜑 → 𝑥 = 𝑋)) |
| 9 | 3, 4, 8 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → 𝑥 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 {crab 3408 ⊆ wss 3917 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-ss 3934 df-sn 4593 |
| This theorem is referenced by: constrfin 33743 suppmptcfin 48368 linc1 48418 |
| Copyright terms: Public domain | W3C validator |