MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsssn Structured version   Visualization version   GIF version

Theorem rabsssn 4597
Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019.)
Assertion
Ref Expression
rabsssn ({𝑥𝑉𝜑} ⊆ {𝑋} ↔ ∀𝑥𝑉 (𝜑𝑥 = 𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabsssn
StepHypRef Expression
1 df-rab 3144 . . 3 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
2 df-sn 4558 . . 3 {𝑋} = {𝑥𝑥 = 𝑋}
31, 2sseq12i 3994 . 2 ({𝑥𝑉𝜑} ⊆ {𝑋} ↔ {𝑥 ∣ (𝑥𝑉𝜑)} ⊆ {𝑥𝑥 = 𝑋})
4 ss2ab 4036 . 2 ({𝑥 ∣ (𝑥𝑉𝜑)} ⊆ {𝑥𝑥 = 𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) → 𝑥 = 𝑋))
5 impexp 451 . . . 4 (((𝑥𝑉𝜑) → 𝑥 = 𝑋) ↔ (𝑥𝑉 → (𝜑𝑥 = 𝑋)))
65albii 1811 . . 3 (∀𝑥((𝑥𝑉𝜑) → 𝑥 = 𝑋) ↔ ∀𝑥(𝑥𝑉 → (𝜑𝑥 = 𝑋)))
7 df-ral 3140 . . 3 (∀𝑥𝑉 (𝜑𝑥 = 𝑋) ↔ ∀𝑥(𝑥𝑉 → (𝜑𝑥 = 𝑋)))
86, 7bitr4i 279 . 2 (∀𝑥((𝑥𝑉𝜑) → 𝑥 = 𝑋) ↔ ∀𝑥𝑉 (𝜑𝑥 = 𝑋))
93, 4, 83bitri 298 1 ({𝑥𝑉𝜑} ⊆ {𝑋} ↔ ∀𝑥𝑉 (𝜑𝑥 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1526   = wceq 1528  wcel 2105  {cab 2796  wral 3135  {crab 3139  wss 3933  {csn 4557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rab 3144  df-in 3940  df-ss 3949  df-sn 4558
This theorem is referenced by:  suppmptcfin  44355  linc1  44408
  Copyright terms: Public domain W3C validator