Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabsssn | Structured version Visualization version GIF version |
Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019.) |
Ref | Expression |
---|---|
rabsssn | ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → 𝑥 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . . 3 ⊢ {𝑥 ∈ 𝑉 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} | |
2 | df-sn 4562 | . . 3 ⊢ {𝑋} = {𝑥 ∣ 𝑥 = 𝑋} | |
3 | 1, 2 | sseq12i 3951 | . 2 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋} ↔ {𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 = 𝑋}) |
4 | ss2ab 3993 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝑉 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 = 𝑋} ↔ ∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → 𝑥 = 𝑋)) | |
5 | impexp 451 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ∧ 𝜑) → 𝑥 = 𝑋) ↔ (𝑥 ∈ 𝑉 → (𝜑 → 𝑥 = 𝑋))) | |
6 | 5 | albii 1822 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → 𝑥 = 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → 𝑥 = 𝑋))) |
7 | df-ral 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝑉 (𝜑 → 𝑥 = 𝑋) ↔ ∀𝑥(𝑥 ∈ 𝑉 → (𝜑 → 𝑥 = 𝑋))) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝑉 ∧ 𝜑) → 𝑥 = 𝑋) ↔ ∀𝑥 ∈ 𝑉 (𝜑 → 𝑥 = 𝑋)) |
9 | 3, 4, 8 | 3bitri 297 | 1 ⊢ ({𝑥 ∈ 𝑉 ∣ 𝜑} ⊆ {𝑋} ↔ ∀𝑥 ∈ 𝑉 (𝜑 → 𝑥 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 ∀wral 3064 {crab 3068 ⊆ wss 3887 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 |
This theorem is referenced by: suppmptcfin 45715 linc1 45766 |
Copyright terms: Public domain | W3C validator |