MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsssn Structured version   Visualization version   GIF version

Theorem rabsssn 4600
Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019.)
Assertion
Ref Expression
rabsssn ({𝑥𝑉𝜑} ⊆ {𝑋} ↔ ∀𝑥𝑉 (𝜑𝑥 = 𝑋))
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rabsssn
StepHypRef Expression
1 df-rab 3072 . . 3 {𝑥𝑉𝜑} = {𝑥 ∣ (𝑥𝑉𝜑)}
2 df-sn 4559 . . 3 {𝑋} = {𝑥𝑥 = 𝑋}
31, 2sseq12i 3947 . 2 ({𝑥𝑉𝜑} ⊆ {𝑋} ↔ {𝑥 ∣ (𝑥𝑉𝜑)} ⊆ {𝑥𝑥 = 𝑋})
4 ss2ab 3989 . 2 ({𝑥 ∣ (𝑥𝑉𝜑)} ⊆ {𝑥𝑥 = 𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) → 𝑥 = 𝑋))
5 impexp 450 . . . 4 (((𝑥𝑉𝜑) → 𝑥 = 𝑋) ↔ (𝑥𝑉 → (𝜑𝑥 = 𝑋)))
65albii 1823 . . 3 (∀𝑥((𝑥𝑉𝜑) → 𝑥 = 𝑋) ↔ ∀𝑥(𝑥𝑉 → (𝜑𝑥 = 𝑋)))
7 df-ral 3068 . . 3 (∀𝑥𝑉 (𝜑𝑥 = 𝑋) ↔ ∀𝑥(𝑥𝑉 → (𝜑𝑥 = 𝑋)))
86, 7bitr4i 277 . 2 (∀𝑥((𝑥𝑉𝜑) → 𝑥 = 𝑋) ↔ ∀𝑥𝑉 (𝜑𝑥 = 𝑋))
93, 4, 83bitri 296 1 ({𝑥𝑉𝜑} ⊆ {𝑋} ↔ ∀𝑥𝑉 (𝜑𝑥 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wral 3063  {crab 3067  wss 3883  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-sn 4559
This theorem is referenced by:  suppmptcfin  45603  linc1  45654
  Copyright terms: Public domain W3C validator