| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version | ||
| Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
| Ref | Expression |
|---|---|
| nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4618 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2957 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ≠ wne 2932 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-sn 4602 |
| This theorem is referenced by: frd 5610 fvn0fvelrn 6906 fvunsn 7170 fzdif1 13620 nnoddn2prmb 16831 lbsextlem4 21120 cnfldfun 21327 cnfldfunOLD 21340 obslbs 21688 logbgcd1irr 26754 upgrres1 29238 cycpmco2 33090 elrgspnlem4 33186 lindssn 33339 drngidlhash 33395 drnglidl1ne0 33436 drng0mxidl 33437 rsprprmprmidlb 33484 rprmirredb 33493 1arithufdlem4 33508 ig1pmindeg 33557 irngnminplynz 33692 algextdeglem4 33700 submateqlem1 33784 submateqlem2 33785 qqhval2 33959 derangsn 35138 ricdrng1 42498 prjspersym 42577 prjspreln0 42579 prjspnvs 42590 pr2eldif1 43525 pr2eldif2 43526 clsk3nimkb 44011 clsk1indlem1 44016 disjf1o 45163 cnrefiisplem 45806 fperdvper 45896 dvnmul 45920 wallispi 46047 etransc 46260 gsumge0cl 46348 meadjiunlem 46442 hspmbllem2 46604 |
| Copyright terms: Public domain | W3C validator |