![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version |
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
Ref | Expression |
---|---|
nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4645 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2964 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ≠ wne 2939 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-sn 4629 |
This theorem is referenced by: frd 5635 fvn0fvelrn 6922 fvunsn 7179 nnoddn2prmb 16753 lbsextlem4 21007 cnfldfun 21244 obslbs 21594 logbgcd1irr 26639 upgrres1 29002 cycpmco2 32727 lindssn 32933 drngidlhash 32991 drnglidl1ne0 33030 drng0mxidl 33031 ig1pmindeg 33112 irngnminplynz 33225 algextdeglem4 33230 submateqlem1 33250 submateqlem2 33251 qqhval2 33425 derangsn 34624 gg-cnfldfun 35643 ricdrng1 41566 prjspersym 41811 prjspreln0 41813 prjspvs 41814 prjspnvs 41824 pr2eldif1 42767 pr2eldif2 42768 clsk3nimkb 43253 clsk1indlem1 43258 disjf1o 44348 cnrefiisplem 45003 fperdvper 45093 dvnmul 45117 wallispi 45244 etransc 45457 gsumge0cl 45545 meadjiunlem 45639 hspmbllem2 45801 |
Copyright terms: Public domain | W3C validator |