![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version |
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
Ref | Expression |
---|---|
nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4591 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2965 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ≠ wne 2940 {csn 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-sn 4575 |
This theorem is referenced by: frd 5580 fvn0fvelrn 6857 fvunsn 7108 nnoddn2prmb 16612 lbsextlem4 20530 cnfldfun 20716 obslbs 21044 logbgcd1irr 26051 upgrres1 27970 cycpmco2 31687 lindssn 31870 submateqlem1 32055 submateqlem2 32056 qqhval2 32230 derangsn 33431 prjspersym 40757 prjspreln0 40759 prjspvs 40760 prjspnvs 40770 pr2eldif1 41535 pr2eldif2 41536 clsk3nimkb 42023 clsk1indlem1 42028 disjf1o 43108 cnrefiisplem 43758 fperdvper 43848 dvnmul 43872 wallispi 43999 etransc 44212 gsumge0cl 44298 meadjiunlem 44392 hspmbllem2 44554 |
Copyright terms: Public domain | W3C validator |