Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version |
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
Ref | Expression |
---|---|
nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4578 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2968 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ≠ wne 2943 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-sn 4562 |
This theorem is referenced by: frd 5548 fvunsn 7051 nnoddn2prmb 16514 lbsextlem4 20423 cnfldfun 20609 obslbs 20937 logbgcd1irr 25944 upgrres1 27680 cycpmco2 31400 lindssn 31573 submateqlem1 31757 submateqlem2 31758 qqhval2 31932 derangsn 33132 prjspersym 40446 prjspreln0 40448 prjspvs 40449 prjspnvs 40459 pr2eldif1 41161 pr2eldif2 41162 clsk3nimkb 41650 clsk1indlem1 41655 disjf1o 42729 cnrefiisplem 43370 fperdvper 43460 dvnmul 43484 wallispi 43611 etransc 43824 gsumge0cl 43909 meadjiunlem 44003 hspmbllem2 44165 |
Copyright terms: Public domain | W3C validator |