![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version |
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
Ref | Expression |
---|---|
nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4665 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2971 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ≠ wne 2946 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-sn 4649 |
This theorem is referenced by: frd 5656 fvn0fvelrn 6951 fvunsn 7213 nnoddn2prmb 16860 lbsextlem4 21186 cnfldfun 21401 cnfldfunOLD 21414 obslbs 21773 logbgcd1irr 26855 upgrres1 29348 cycpmco2 33126 lindssn 33371 drngidlhash 33427 drnglidl1ne0 33468 drng0mxidl 33469 rsprprmprmidlb 33516 rprmirredb 33525 1arithufdlem4 33540 ig1pmindeg 33587 irngnminplynz 33705 algextdeglem4 33711 submateqlem1 33753 submateqlem2 33754 qqhval2 33928 derangsn 35138 ricdrng1 42483 prjspersym 42562 prjspreln0 42564 prjspnvs 42575 pr2eldif1 43516 pr2eldif2 43517 clsk3nimkb 44002 clsk1indlem1 44007 disjf1o 45098 cnrefiisplem 45750 fperdvper 45840 dvnmul 45864 wallispi 45991 etransc 46204 gsumge0cl 46292 meadjiunlem 46386 hspmbllem2 46548 |
Copyright terms: Public domain | W3C validator |