| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version | ||
| Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
| Ref | Expression |
|---|---|
| nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4596 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2950 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2925 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-sn 4580 |
| This theorem is referenced by: frd 5580 fvn0fvelrn 6855 fvunsn 7119 fzdif1 13527 nnoddn2prmb 16744 lbsextlem4 21087 cnfldfun 21294 cnfldfunOLD 21307 obslbs 21656 logbgcd1irr 26721 upgrres1 29277 cycpmco2 33094 elrgspnlem4 33204 lindssn 33334 drngidlhash 33390 drnglidl1ne0 33431 drng0mxidl 33432 rsprprmprmidlb 33479 rprmirredb 33488 1arithufdlem4 33503 ig1pmindeg 33553 irngnminplynz 33698 algextdeglem4 33706 submateqlem1 33793 submateqlem2 33794 qqhval2 33968 derangsn 35162 ricdrng1 42521 prjspersym 42600 prjspreln0 42602 prjspnvs 42613 pr2eldif1 43547 pr2eldif2 43548 clsk3nimkb 44033 clsk1indlem1 44038 disjf1o 45189 cnrefiisplem 45830 fperdvper 45920 dvnmul 45944 wallispi 46071 etransc 46284 gsumge0cl 46372 meadjiunlem 46466 hspmbllem2 46628 |
| Copyright terms: Public domain | W3C validator |