| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version | ||
| Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
| Ref | Expression |
|---|---|
| nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4594 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2954 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ≠ wne 2929 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-sn 4578 |
| This theorem is referenced by: frd 5578 fvn0fvelrn 6860 fvunsn 7122 fzdif1 13512 nnoddn2prmb 16732 chnccat 18540 lbsextlem4 21107 cnfldfun 21314 cnfldfunOLD 21327 obslbs 21676 logbgcd1irr 26751 upgrres1 29312 cycpmco2 33143 elrgspnlem4 33255 lindssn 33387 drngidlhash 33443 drnglidl1ne0 33484 drng0mxidl 33485 rsprprmprmidlb 33532 rprmirredb 33541 1arithufdlem4 33556 ig1pmindeg 33611 irngnminplynz 33797 algextdeglem4 33805 submateqlem1 33892 submateqlem2 33893 qqhval2 34067 derangsn 35286 ricdrng1 42698 prjspersym 42765 prjspreln0 42767 prjspnvs 42778 pr2eldif1 43711 pr2eldif2 43712 clsk3nimkb 44197 clsk1indlem1 44202 disjf1o 45351 cnrefiisplem 45989 fperdvper 46079 dvnmul 46103 wallispi 46230 etransc 46443 gsumge0cl 46531 meadjiunlem 46625 hspmbllem2 46787 nthrucw 47046 |
| Copyright terms: Public domain | W3C validator |