| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version | ||
| Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
| Ref | Expression |
|---|---|
| nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4609 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2951 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2926 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-sn 4593 |
| This theorem is referenced by: frd 5598 fvn0fvelrn 6892 fvunsn 7156 fzdif1 13573 nnoddn2prmb 16791 lbsextlem4 21078 cnfldfun 21285 cnfldfunOLD 21298 obslbs 21646 logbgcd1irr 26711 upgrres1 29247 cycpmco2 33097 elrgspnlem4 33203 lindssn 33356 drngidlhash 33412 drnglidl1ne0 33453 drng0mxidl 33454 rsprprmprmidlb 33501 rprmirredb 33510 1arithufdlem4 33525 ig1pmindeg 33574 irngnminplynz 33709 algextdeglem4 33717 submateqlem1 33804 submateqlem2 33805 qqhval2 33979 derangsn 35164 ricdrng1 42523 prjspersym 42602 prjspreln0 42604 prjspnvs 42615 pr2eldif1 43550 pr2eldif2 43551 clsk3nimkb 44036 clsk1indlem1 44041 disjf1o 45192 cnrefiisplem 45834 fperdvper 45924 dvnmul 45948 wallispi 46075 etransc 46288 gsumge0cl 46376 meadjiunlem 46470 hspmbllem2 46632 |
| Copyright terms: Public domain | W3C validator |