![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version |
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
Ref | Expression |
---|---|
nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4647 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2962 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ≠ wne 2937 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-sn 4631 |
This theorem is referenced by: frd 5644 fvn0fvelrn 6937 fvunsn 7198 fzdif1 13641 nnoddn2prmb 16846 lbsextlem4 21180 cnfldfun 21395 cnfldfunOLD 21408 obslbs 21767 logbgcd1irr 26851 upgrres1 29344 cycpmco2 33135 elrgspnlem4 33234 lindssn 33385 drngidlhash 33441 drnglidl1ne0 33482 drng0mxidl 33483 rsprprmprmidlb 33530 rprmirredb 33539 1arithufdlem4 33554 ig1pmindeg 33601 irngnminplynz 33719 algextdeglem4 33725 submateqlem1 33767 submateqlem2 33768 qqhval2 33944 derangsn 35154 ricdrng1 42514 prjspersym 42593 prjspreln0 42595 prjspnvs 42606 pr2eldif1 43543 pr2eldif2 43544 clsk3nimkb 44029 clsk1indlem1 44034 disjf1o 45133 cnrefiisplem 45784 fperdvper 45874 dvnmul 45898 wallispi 46025 etransc 46238 gsumge0cl 46326 meadjiunlem 46420 hspmbllem2 46582 |
Copyright terms: Public domain | W3C validator |