| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version | ||
| Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
| Ref | Expression |
|---|---|
| nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4606 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2950 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2925 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-sn 4590 |
| This theorem is referenced by: frd 5595 fvn0fvelrn 6889 fvunsn 7153 fzdif1 13566 nnoddn2prmb 16784 lbsextlem4 21071 cnfldfun 21278 cnfldfunOLD 21291 obslbs 21639 logbgcd1irr 26704 upgrres1 29240 cycpmco2 33090 elrgspnlem4 33196 lindssn 33349 drngidlhash 33405 drnglidl1ne0 33446 drng0mxidl 33447 rsprprmprmidlb 33494 rprmirredb 33503 1arithufdlem4 33518 ig1pmindeg 33567 irngnminplynz 33702 algextdeglem4 33710 submateqlem1 33797 submateqlem2 33798 qqhval2 33972 derangsn 35157 ricdrng1 42516 prjspersym 42595 prjspreln0 42597 prjspnvs 42608 pr2eldif1 43543 pr2eldif2 43544 clsk3nimkb 44029 clsk1indlem1 44034 disjf1o 45185 cnrefiisplem 45827 fperdvper 45917 dvnmul 45941 wallispi 46068 etransc 46281 gsumge0cl 46369 meadjiunlem 46463 hspmbllem2 46625 |
| Copyright terms: Public domain | W3C validator |