| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version | ||
| Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
| Ref | Expression |
|---|---|
| nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4602 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2950 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ≠ wne 2925 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-sn 4586 |
| This theorem is referenced by: frd 5588 fvn0fvelrn 6871 fvunsn 7135 fzdif1 13542 nnoddn2prmb 16760 lbsextlem4 21047 cnfldfun 21254 cnfldfunOLD 21267 obslbs 21615 logbgcd1irr 26680 upgrres1 29216 cycpmco2 33063 elrgspnlem4 33169 lindssn 33322 drngidlhash 33378 drnglidl1ne0 33419 drng0mxidl 33420 rsprprmprmidlb 33467 rprmirredb 33476 1arithufdlem4 33491 ig1pmindeg 33540 irngnminplynz 33675 algextdeglem4 33683 submateqlem1 33770 submateqlem2 33771 qqhval2 33945 derangsn 35130 ricdrng1 42489 prjspersym 42568 prjspreln0 42570 prjspnvs 42581 pr2eldif1 43516 pr2eldif2 43517 clsk3nimkb 44002 clsk1indlem1 44007 disjf1o 45158 cnrefiisplem 45800 fperdvper 45890 dvnmul 45914 wallispi 46041 etransc 46254 gsumge0cl 46342 meadjiunlem 46436 hspmbllem2 46598 |
| Copyright terms: Public domain | W3C validator |