| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version | ||
| Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
| Ref | Expression |
|---|---|
| nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4588 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2953 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ≠ wne 2928 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-sn 4572 |
| This theorem is referenced by: frd 5568 fvn0fvelrn 6846 fvunsn 7108 fzdif1 13500 nnoddn2prmb 16720 chnccat 18527 lbsextlem4 21093 cnfldfun 21300 cnfldfunOLD 21313 obslbs 21662 logbgcd1irr 26726 upgrres1 29286 cycpmco2 33094 elrgspnlem4 33204 lindssn 33335 drngidlhash 33391 drnglidl1ne0 33432 drng0mxidl 33433 rsprprmprmidlb 33480 rprmirredb 33489 1arithufdlem4 33504 ig1pmindeg 33554 irngnminplynz 33717 algextdeglem4 33725 submateqlem1 33812 submateqlem2 33813 qqhval2 33987 derangsn 35206 ricdrng1 42561 prjspersym 42640 prjspreln0 42642 prjspnvs 42653 pr2eldif1 43587 pr2eldif2 43588 clsk3nimkb 44073 clsk1indlem1 44078 disjf1o 45228 cnrefiisplem 45867 fperdvper 45957 dvnmul 45981 wallispi 46108 etransc 46321 gsumge0cl 46409 meadjiunlem 46503 hspmbllem2 46665 |
| Copyright terms: Public domain | W3C validator |