Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version |
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
Ref | Expression |
---|---|
nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4575 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2967 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ≠ wne 2942 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-sn 4559 |
This theorem is referenced by: frd 5539 fvunsn 7033 nnoddn2prmb 16442 lbsextlem4 20338 cnfldfunALT 20523 obslbs 20847 logbgcd1irr 25849 upgrres1 27583 cycpmco2 31302 lindssn 31475 submateqlem1 31659 submateqlem2 31660 qqhval2 31832 derangsn 33032 prjspersym 40367 prjspreln0 40369 prjspvs 40370 prjspnvs 40380 pr2eldif1 41050 pr2eldif2 41051 clsk3nimkb 41539 clsk1indlem1 41544 disjf1o 42618 cnrefiisplem 43260 fperdvper 43350 dvnmul 43374 wallispi 43501 etransc 43714 gsumge0cl 43799 meadjiunlem 43893 hspmbllem2 44055 |
Copyright terms: Public domain | W3C validator |