Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelsn | Structured version Visualization version GIF version |
Description: If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.) |
Ref | Expression |
---|---|
nelsn | ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4558 | . 2 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2965 | 1 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2110 ≠ wne 2940 {csn 4541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-sn 4542 |
This theorem is referenced by: fvunsn 6994 nnoddn2prmb 16366 lbsextlem4 20198 cnfldfunALT 20376 obslbs 20692 logbgcd1irr 25677 upgrres1 27401 cycpmco2 31119 lindssn 31287 submateqlem1 31471 submateqlem2 31472 qqhval2 31644 derangsn 32845 prjspersym 40154 prjspreln0 40156 prjspvs 40157 prjspnvs 40167 pr2eldif1 40837 pr2eldif2 40838 clsk3nimkb 41327 clsk1indlem1 41332 disjf1o 42402 cnrefiisplem 43045 fperdvper 43135 dvnmul 43159 wallispi 43286 etransc 43499 gsumge0cl 43584 meadjiunlem 43678 hspmbllem2 43840 |
Copyright terms: Public domain | W3C validator |