Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004val0 Structured version   Visualization version   GIF version

Theorem k0004val0 44116
Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004val0 (𝐴‘0) = {{⟨1, 1⟩}}
Distinct variable group:   𝑘,𝑛,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004val0
StepHypRef Expression
1 0nn0 12568 . . 3 0 ∈ ℕ0
2 k0004.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
32k0004val 44112 . . 3 (0 ∈ ℕ0 → (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1})
41, 3ax-mp 5 . 2 (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1}
5 0p1e1 12415 . . . . . . . 8 (0 + 1) = 1
65oveq2i 7459 . . . . . . 7 (1...(0 + 1)) = (1...1)
7 1z 12673 . . . . . . . 8 1 ∈ ℤ
8 fzsn 13626 . . . . . . . 8 (1 ∈ ℤ → (1...1) = {1})
97, 8ax-mp 5 . . . . . . 7 (1...1) = {1}
106, 9eqtri 2768 . . . . . 6 (1...(0 + 1)) = {1}
1110oveq2i 7459 . . . . 5 ((0[,]1) ↑m (1...(0 + 1))) = ((0[,]1) ↑m {1})
1211rabeqi 3457 . . . 4 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1}
1310sumeq1i 15745 . . . . . . 7 Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = Σ𝑘 ∈ {1} (𝑡𝑘)
14 elmapi 8907 . . . . . . . . 9 (𝑡 ∈ ((0[,]1) ↑m {1}) → 𝑡:{1}⟶(0[,]1))
15 fsn2g 7172 . . . . . . . . . . 11 (1 ∈ ℤ → (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})))
167, 15ax-mp 5 . . . . . . . . . 10 (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))
1716biimpi 216 . . . . . . . . 9 (𝑡:{1}⟶(0[,]1) → ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))
18 unitssre 13559 . . . . . . . . . . . 12 (0[,]1) ⊆ ℝ
19 ax-resscn 11241 . . . . . . . . . . . 12 ℝ ⊆ ℂ
2018, 19sstri 4018 . . . . . . . . . . 11 (0[,]1) ⊆ ℂ
2120sseli 4004 . . . . . . . . . 10 ((𝑡‘1) ∈ (0[,]1) → (𝑡‘1) ∈ ℂ)
2221adantr 480 . . . . . . . . 9 (((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}) → (𝑡‘1) ∈ ℂ)
2314, 17, 223syl 18 . . . . . . . 8 (𝑡 ∈ ((0[,]1) ↑m {1}) → (𝑡‘1) ∈ ℂ)
24 fveq2 6920 . . . . . . . . 9 (𝑘 = 1 → (𝑡𝑘) = (𝑡‘1))
2524sumsn 15794 . . . . . . . 8 ((1 ∈ ℤ ∧ (𝑡‘1) ∈ ℂ) → Σ𝑘 ∈ {1} (𝑡𝑘) = (𝑡‘1))
267, 23, 25sylancr 586 . . . . . . 7 (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ {1} (𝑡𝑘) = (𝑡‘1))
2713, 26eqtrid 2792 . . . . . 6 (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = (𝑡‘1))
2827eqeq1d 2742 . . . . 5 (𝑡 ∈ ((0[,]1) ↑m {1}) → (Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1 ↔ (𝑡‘1) = 1))
2928rabbiia 3447 . . . 4 {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1}
3012, 29eqtri 2768 . . 3 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1}
31 rabeqsn 4689 . . . 4 ({𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} ↔ ∀𝑡((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}))
32 ovex 7481 . . . . 5 (0[,]1) ∈ V
33 1elunit 13530 . . . . 5 1 ∈ (0[,]1)
34 k0004lem3 44111 . . . . 5 ((1 ∈ ℤ ∧ (0[,]1) ∈ V ∧ 1 ∈ (0[,]1)) → ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}))
357, 32, 33, 34mp3an 1461 . . . 4 ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})
3631, 35mpgbir 1797 . . 3 {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}}
3730, 36eqtri 2768 . 2 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {{⟨1, 1⟩}}
384, 37eqtri 2768 1 (𝐴‘0) = {{⟨1, 1⟩}}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  {csn 4648  cop 4654  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  0cn0 12553  cz 12639  [,]cicc 13410  ...cfz 13567  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator