![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val0 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004val0 | ⊢ (𝐴‘0) = {{⟨1, 1⟩}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12517 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | k0004.a | . . . 4 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
3 | 2 | k0004val 43645 | . . 3 ⊢ (0 ∈ ℕ0 → (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1}) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
5 | 0p1e1 12364 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
6 | 5 | oveq2i 7427 | . . . . . . 7 ⊢ (1...(0 + 1)) = (1...1) |
7 | 1z 12622 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
8 | fzsn 13575 | . . . . . . . 8 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (1...1) = {1} |
10 | 6, 9 | eqtri 2753 | . . . . . 6 ⊢ (1...(0 + 1)) = {1} |
11 | 10 | oveq2i 7427 | . . . . 5 ⊢ ((0[,]1) ↑m (1...(0 + 1))) = ((0[,]1) ↑m {1}) |
12 | 11 | rabeqi 3433 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
13 | 10 | sumeq1i 15676 | . . . . . . 7 ⊢ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ {1} (𝑡‘𝑘) |
14 | elmapi 8866 | . . . . . . . . 9 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → 𝑡:{1}⟶(0[,]1)) | |
15 | fsn2g 7143 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))) | |
16 | 7, 15 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})) |
17 | 16 | biimpi 215 | . . . . . . . . 9 ⊢ (𝑡:{1}⟶(0[,]1) → ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})) |
18 | unitssre 13508 | . . . . . . . . . . . 12 ⊢ (0[,]1) ⊆ ℝ | |
19 | ax-resscn 11195 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
20 | 18, 19 | sstri 3982 | . . . . . . . . . . 11 ⊢ (0[,]1) ⊆ ℂ |
21 | 20 | sseli 3968 | . . . . . . . . . 10 ⊢ ((𝑡‘1) ∈ (0[,]1) → (𝑡‘1) ∈ ℂ) |
22 | 21 | adantr 479 | . . . . . . . . 9 ⊢ (((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}) → (𝑡‘1) ∈ ℂ) |
23 | 14, 17, 22 | 3syl 18 | . . . . . . . 8 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (𝑡‘1) ∈ ℂ) |
24 | fveq2 6892 | . . . . . . . . 9 ⊢ (𝑘 = 1 → (𝑡‘𝑘) = (𝑡‘1)) | |
25 | 24 | sumsn 15724 | . . . . . . . 8 ⊢ ((1 ∈ ℤ ∧ (𝑡‘1) ∈ ℂ) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
26 | 7, 23, 25 | sylancr 585 | . . . . . . 7 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
27 | 13, 26 | eqtrid 2777 | . . . . . 6 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = (𝑡‘1)) |
28 | 27 | eqeq1d 2727 | . . . . 5 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1 ↔ (𝑡‘1) = 1)) |
29 | 28 | rabbiia 3423 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
30 | 12, 29 | eqtri 2753 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
31 | rabeqsn 4665 | . . . 4 ⊢ ({𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} ↔ ∀𝑡((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})) | |
32 | ovex 7449 | . . . . 5 ⊢ (0[,]1) ∈ V | |
33 | 1elunit 13479 | . . . . 5 ⊢ 1 ∈ (0[,]1) | |
34 | k0004lem3 43644 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (0[,]1) ∈ V ∧ 1 ∈ (0[,]1)) → ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})) | |
35 | 7, 32, 33, 34 | mp3an 1457 | . . . 4 ⊢ ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}) |
36 | 31, 35 | mpgbir 1793 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} |
37 | 30, 36 | eqtri 2753 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {{⟨1, 1⟩}} |
38 | 4, 37 | eqtri 2753 | 1 ⊢ (𝐴‘0) = {{⟨1, 1⟩}} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 {csn 4624 ⟨cop 4630 ↦ cmpt 5226 ⟶wf 6539 ‘cfv 6543 (class class class)co 7416 ↑m cmap 8843 ℂcc 11136 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 ℕ0cn0 12502 ℤcz 12588 [,]cicc 13359 ...cfz 13516 Σcsu 15664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-icc 13363 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |