Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004val0 Structured version   Visualization version   GIF version

Theorem k0004val0 41393
Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004val0 (𝐴‘0) = {{⟨1, 1⟩}}
Distinct variable group:   𝑘,𝑛,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004val0
StepHypRef Expression
1 0nn0 12088 . . 3 0 ∈ ℕ0
2 k0004.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
32k0004val 41389 . . 3 (0 ∈ ℕ0 → (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1})
41, 3ax-mp 5 . 2 (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1}
5 0p1e1 11935 . . . . . . . 8 (0 + 1) = 1
65oveq2i 7213 . . . . . . 7 (1...(0 + 1)) = (1...1)
7 1z 12190 . . . . . . . 8 1 ∈ ℤ
8 fzsn 13137 . . . . . . . 8 (1 ∈ ℤ → (1...1) = {1})
97, 8ax-mp 5 . . . . . . 7 (1...1) = {1}
106, 9eqtri 2762 . . . . . 6 (1...(0 + 1)) = {1}
1110oveq2i 7213 . . . . 5 ((0[,]1) ↑m (1...(0 + 1))) = ((0[,]1) ↑m {1})
1211rabeqi 3385 . . . 4 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1}
1310sumeq1i 15245 . . . . . . 7 Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = Σ𝑘 ∈ {1} (𝑡𝑘)
14 elmapi 8519 . . . . . . . . 9 (𝑡 ∈ ((0[,]1) ↑m {1}) → 𝑡:{1}⟶(0[,]1))
15 fsn2g 6942 . . . . . . . . . . 11 (1 ∈ ℤ → (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})))
167, 15ax-mp 5 . . . . . . . . . 10 (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))
1716biimpi 219 . . . . . . . . 9 (𝑡:{1}⟶(0[,]1) → ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))
18 unitssre 13070 . . . . . . . . . . . 12 (0[,]1) ⊆ ℝ
19 ax-resscn 10769 . . . . . . . . . . . 12 ℝ ⊆ ℂ
2018, 19sstri 3900 . . . . . . . . . . 11 (0[,]1) ⊆ ℂ
2120sseli 3887 . . . . . . . . . 10 ((𝑡‘1) ∈ (0[,]1) → (𝑡‘1) ∈ ℂ)
2221adantr 484 . . . . . . . . 9 (((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}) → (𝑡‘1) ∈ ℂ)
2314, 17, 223syl 18 . . . . . . . 8 (𝑡 ∈ ((0[,]1) ↑m {1}) → (𝑡‘1) ∈ ℂ)
24 fveq2 6706 . . . . . . . . 9 (𝑘 = 1 → (𝑡𝑘) = (𝑡‘1))
2524sumsn 15291 . . . . . . . 8 ((1 ∈ ℤ ∧ (𝑡‘1) ∈ ℂ) → Σ𝑘 ∈ {1} (𝑡𝑘) = (𝑡‘1))
267, 23, 25sylancr 590 . . . . . . 7 (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ {1} (𝑡𝑘) = (𝑡‘1))
2713, 26syl5eq 2786 . . . . . 6 (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = (𝑡‘1))
2827eqeq1d 2736 . . . . 5 (𝑡 ∈ ((0[,]1) ↑m {1}) → (Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1 ↔ (𝑡‘1) = 1))
2928rabbiia 3375 . . . 4 {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1}
3012, 29eqtri 2762 . . 3 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1}
31 rabeqsn 4572 . . . 4 ({𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} ↔ ∀𝑡((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}))
32 ovex 7235 . . . . 5 (0[,]1) ∈ V
33 1elunit 13041 . . . . 5 1 ∈ (0[,]1)
34 k0004lem3 41388 . . . . 5 ((1 ∈ ℤ ∧ (0[,]1) ∈ V ∧ 1 ∈ (0[,]1)) → ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}))
357, 32, 33, 34mp3an 1463 . . . 4 ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})
3631, 35mpgbir 1807 . . 3 {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}}
3730, 36eqtri 2762 . 2 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {{⟨1, 1⟩}}
384, 37eqtri 2762 1 (𝐴‘0) = {{⟨1, 1⟩}}
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110  {crab 3058  Vcvv 3401  {csn 4531  cop 4537  cmpt 5124  wf 6365  cfv 6369  (class class class)co 7202  m cmap 8497  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715  0cn0 12073  cz 12159  [,]cicc 12921  ...cfz 13078  Σcsu 15232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-icc 12925  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator