Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004val0 Structured version   Visualization version   GIF version

Theorem k0004val0 44116
Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004val0 (𝐴‘0) = {{⟨1, 1⟩}}
Distinct variable group:   𝑘,𝑛,𝑡
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004val0
StepHypRef Expression
1 0nn0 12433 . . 3 0 ∈ ℕ0
2 k0004.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
32k0004val 44112 . . 3 (0 ∈ ℕ0 → (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1})
41, 3ax-mp 5 . 2 (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1}
5 0p1e1 12279 . . . . . . . 8 (0 + 1) = 1
65oveq2i 7380 . . . . . . 7 (1...(0 + 1)) = (1...1)
7 1z 12539 . . . . . . . 8 1 ∈ ℤ
8 fzsn 13503 . . . . . . . 8 (1 ∈ ℤ → (1...1) = {1})
97, 8ax-mp 5 . . . . . . 7 (1...1) = {1}
106, 9eqtri 2752 . . . . . 6 (1...(0 + 1)) = {1}
1110oveq2i 7380 . . . . 5 ((0[,]1) ↑m (1...(0 + 1))) = ((0[,]1) ↑m {1})
1211rabeqi 3416 . . . 4 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1}
1310sumeq1i 15639 . . . . . . 7 Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = Σ𝑘 ∈ {1} (𝑡𝑘)
14 elmapi 8799 . . . . . . . . 9 (𝑡 ∈ ((0[,]1) ↑m {1}) → 𝑡:{1}⟶(0[,]1))
15 fsn2g 7092 . . . . . . . . . . 11 (1 ∈ ℤ → (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})))
167, 15ax-mp 5 . . . . . . . . . 10 (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))
1716biimpi 216 . . . . . . . . 9 (𝑡:{1}⟶(0[,]1) → ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))
18 unitssre 13436 . . . . . . . . . . . 12 (0[,]1) ⊆ ℝ
19 ax-resscn 11101 . . . . . . . . . . . 12 ℝ ⊆ ℂ
2018, 19sstri 3953 . . . . . . . . . . 11 (0[,]1) ⊆ ℂ
2120sseli 3939 . . . . . . . . . 10 ((𝑡‘1) ∈ (0[,]1) → (𝑡‘1) ∈ ℂ)
2221adantr 480 . . . . . . . . 9 (((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}) → (𝑡‘1) ∈ ℂ)
2314, 17, 223syl 18 . . . . . . . 8 (𝑡 ∈ ((0[,]1) ↑m {1}) → (𝑡‘1) ∈ ℂ)
24 fveq2 6840 . . . . . . . . 9 (𝑘 = 1 → (𝑡𝑘) = (𝑡‘1))
2524sumsn 15688 . . . . . . . 8 ((1 ∈ ℤ ∧ (𝑡‘1) ∈ ℂ) → Σ𝑘 ∈ {1} (𝑡𝑘) = (𝑡‘1))
267, 23, 25sylancr 587 . . . . . . 7 (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ {1} (𝑡𝑘) = (𝑡‘1))
2713, 26eqtrid 2776 . . . . . 6 (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = (𝑡‘1))
2827eqeq1d 2731 . . . . 5 (𝑡 ∈ ((0[,]1) ↑m {1}) → (Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1 ↔ (𝑡‘1) = 1))
2928rabbiia 3406 . . . 4 {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1}
3012, 29eqtri 2752 . . 3 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1}
31 rabeqsn 4627 . . . 4 ({𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} ↔ ∀𝑡((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}))
32 ovex 7402 . . . . 5 (0[,]1) ∈ V
33 1elunit 13407 . . . . 5 1 ∈ (0[,]1)
34 k0004lem3 44111 . . . . 5 ((1 ∈ ℤ ∧ (0[,]1) ∈ V ∧ 1 ∈ (0[,]1)) → ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}))
357, 32, 33, 34mp3an 1463 . . . 4 ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})
3631, 35mpgbir 1799 . . 3 {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}}
3730, 36eqtri 2752 . 2 {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡𝑘) = 1} = {{⟨1, 1⟩}}
384, 37eqtri 2752 1 (𝐴‘0) = {{⟨1, 1⟩}}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  {csn 4585  cop 4591  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  0cn0 12418  cz 12505  [,]cicc 13285  ...cfz 13444  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator