| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val0 | Structured version Visualization version GIF version | ||
| Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
| Ref | Expression |
|---|---|
| k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
| Ref | Expression |
|---|---|
| k0004val0 | ⊢ (𝐴‘0) = {{〈1, 1〉}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12541 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | k0004.a | . . . 4 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
| 3 | 2 | k0004val 44163 | . . 3 ⊢ (0 ∈ ℕ0 → (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1}) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
| 5 | 0p1e1 12388 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
| 6 | 5 | oveq2i 7442 | . . . . . . 7 ⊢ (1...(0 + 1)) = (1...1) |
| 7 | 1z 12647 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 8 | fzsn 13606 | . . . . . . . 8 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (1...1) = {1} |
| 10 | 6, 9 | eqtri 2765 | . . . . . 6 ⊢ (1...(0 + 1)) = {1} |
| 11 | 10 | oveq2i 7442 | . . . . 5 ⊢ ((0[,]1) ↑m (1...(0 + 1))) = ((0[,]1) ↑m {1}) |
| 12 | 11 | rabeqi 3450 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
| 13 | 10 | sumeq1i 15733 | . . . . . . 7 ⊢ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ {1} (𝑡‘𝑘) |
| 14 | elmapi 8889 | . . . . . . . . 9 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → 𝑡:{1}⟶(0[,]1)) | |
| 15 | fsn2g 7158 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {〈1, (𝑡‘1)〉}))) | |
| 16 | 7, 15 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {〈1, (𝑡‘1)〉})) |
| 17 | 16 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑡:{1}⟶(0[,]1) → ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {〈1, (𝑡‘1)〉})) |
| 18 | unitssre 13539 | . . . . . . . . . . . 12 ⊢ (0[,]1) ⊆ ℝ | |
| 19 | ax-resscn 11212 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
| 20 | 18, 19 | sstri 3993 | . . . . . . . . . . 11 ⊢ (0[,]1) ⊆ ℂ |
| 21 | 20 | sseli 3979 | . . . . . . . . . 10 ⊢ ((𝑡‘1) ∈ (0[,]1) → (𝑡‘1) ∈ ℂ) |
| 22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {〈1, (𝑡‘1)〉}) → (𝑡‘1) ∈ ℂ) |
| 23 | 14, 17, 22 | 3syl 18 | . . . . . . . 8 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (𝑡‘1) ∈ ℂ) |
| 24 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑘 = 1 → (𝑡‘𝑘) = (𝑡‘1)) | |
| 25 | 24 | sumsn 15782 | . . . . . . . 8 ⊢ ((1 ∈ ℤ ∧ (𝑡‘1) ∈ ℂ) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
| 26 | 7, 23, 25 | sylancr 587 | . . . . . . 7 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
| 27 | 13, 26 | eqtrid 2789 | . . . . . 6 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = (𝑡‘1)) |
| 28 | 27 | eqeq1d 2739 | . . . . 5 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1 ↔ (𝑡‘1) = 1)) |
| 29 | 28 | rabbiia 3440 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
| 30 | 12, 29 | eqtri 2765 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
| 31 | rabeqsn 4667 | . . . 4 ⊢ ({𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{〈1, 1〉}} ↔ ∀𝑡((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {〈1, 1〉})) | |
| 32 | ovex 7464 | . . . . 5 ⊢ (0[,]1) ∈ V | |
| 33 | 1elunit 13510 | . . . . 5 ⊢ 1 ∈ (0[,]1) | |
| 34 | k0004lem3 44162 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (0[,]1) ∈ V ∧ 1 ∈ (0[,]1)) → ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {〈1, 1〉})) | |
| 35 | 7, 32, 33, 34 | mp3an 1463 | . . . 4 ⊢ ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {〈1, 1〉}) |
| 36 | 31, 35 | mpgbir 1799 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{〈1, 1〉}} |
| 37 | 30, 36 | eqtri 2765 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {{〈1, 1〉}} |
| 38 | 4, 37 | eqtri 2765 | 1 ⊢ (𝐴‘0) = {{〈1, 1〉}} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 {csn 4626 〈cop 4632 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 ℕ0cn0 12526 ℤcz 12613 [,]cicc 13390 ...cfz 13547 Σcsu 15722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |