![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val0 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004val0 | ⊢ (𝐴‘0) = {{⟨1, 1⟩}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12491 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | k0004.a | . . . 4 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
3 | 2 | k0004val 43477 | . . 3 ⊢ (0 ∈ ℕ0 → (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1}) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
5 | 0p1e1 12338 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
6 | 5 | oveq2i 7416 | . . . . . . 7 ⊢ (1...(0 + 1)) = (1...1) |
7 | 1z 12596 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
8 | fzsn 13549 | . . . . . . . 8 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (1...1) = {1} |
10 | 6, 9 | eqtri 2754 | . . . . . 6 ⊢ (1...(0 + 1)) = {1} |
11 | 10 | oveq2i 7416 | . . . . 5 ⊢ ((0[,]1) ↑m (1...(0 + 1))) = ((0[,]1) ↑m {1}) |
12 | 11 | rabeqi 3439 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
13 | 10 | sumeq1i 15650 | . . . . . . 7 ⊢ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ {1} (𝑡‘𝑘) |
14 | elmapi 8845 | . . . . . . . . 9 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → 𝑡:{1}⟶(0[,]1)) | |
15 | fsn2g 7132 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))) | |
16 | 7, 15 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})) |
17 | 16 | biimpi 215 | . . . . . . . . 9 ⊢ (𝑡:{1}⟶(0[,]1) → ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})) |
18 | unitssre 13482 | . . . . . . . . . . . 12 ⊢ (0[,]1) ⊆ ℝ | |
19 | ax-resscn 11169 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
20 | 18, 19 | sstri 3986 | . . . . . . . . . . 11 ⊢ (0[,]1) ⊆ ℂ |
21 | 20 | sseli 3973 | . . . . . . . . . 10 ⊢ ((𝑡‘1) ∈ (0[,]1) → (𝑡‘1) ∈ ℂ) |
22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}) → (𝑡‘1) ∈ ℂ) |
23 | 14, 17, 22 | 3syl 18 | . . . . . . . 8 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (𝑡‘1) ∈ ℂ) |
24 | fveq2 6885 | . . . . . . . . 9 ⊢ (𝑘 = 1 → (𝑡‘𝑘) = (𝑡‘1)) | |
25 | 24 | sumsn 15698 | . . . . . . . 8 ⊢ ((1 ∈ ℤ ∧ (𝑡‘1) ∈ ℂ) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
26 | 7, 23, 25 | sylancr 586 | . . . . . . 7 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
27 | 13, 26 | eqtrid 2778 | . . . . . 6 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = (𝑡‘1)) |
28 | 27 | eqeq1d 2728 | . . . . 5 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1 ↔ (𝑡‘1) = 1)) |
29 | 28 | rabbiia 3430 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
30 | 12, 29 | eqtri 2754 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
31 | rabeqsn 4664 | . . . 4 ⊢ ({𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} ↔ ∀𝑡((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})) | |
32 | ovex 7438 | . . . . 5 ⊢ (0[,]1) ∈ V | |
33 | 1elunit 13453 | . . . . 5 ⊢ 1 ∈ (0[,]1) | |
34 | k0004lem3 43476 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (0[,]1) ∈ V ∧ 1 ∈ (0[,]1)) → ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})) | |
35 | 7, 32, 33, 34 | mp3an 1457 | . . . 4 ⊢ ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}) |
36 | 31, 35 | mpgbir 1793 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} |
37 | 30, 36 | eqtri 2754 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {{⟨1, 1⟩}} |
38 | 4, 37 | eqtri 2754 | 1 ⊢ (𝐴‘0) = {{⟨1, 1⟩}} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 {csn 4623 ⟨cop 4629 ↦ cmpt 5224 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ↑m cmap 8822 ℂcc 11110 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 ℕ0cn0 12476 ℤcz 12562 [,]cicc 13333 ...cfz 13490 Σcsu 15638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-icc 13337 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-sum 15639 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |