![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val0 | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004val0 | ⊢ (𝐴‘0) = {{⟨1, 1⟩}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12433 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | k0004.a | . . . 4 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
3 | 2 | k0004val 42510 | . . 3 ⊢ (0 ∈ ℕ0 → (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1}) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ (𝐴‘0) = {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
5 | 0p1e1 12280 | . . . . . . . 8 ⊢ (0 + 1) = 1 | |
6 | 5 | oveq2i 7369 | . . . . . . 7 ⊢ (1...(0 + 1)) = (1...1) |
7 | 1z 12538 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
8 | fzsn 13489 | . . . . . . . 8 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (1...1) = {1} |
10 | 6, 9 | eqtri 2761 | . . . . . 6 ⊢ (1...(0 + 1)) = {1} |
11 | 10 | oveq2i 7369 | . . . . 5 ⊢ ((0[,]1) ↑m (1...(0 + 1))) = ((0[,]1) ↑m {1}) |
12 | 11 | rabeqi 3419 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} |
13 | 10 | sumeq1i 15588 | . . . . . . 7 ⊢ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ {1} (𝑡‘𝑘) |
14 | elmapi 8790 | . . . . . . . . 9 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → 𝑡:{1}⟶(0[,]1)) | |
15 | fsn2g 7085 | . . . . . . . . . . 11 ⊢ (1 ∈ ℤ → (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}))) | |
16 | 7, 15 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑡:{1}⟶(0[,]1) ↔ ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})) |
17 | 16 | biimpi 215 | . . . . . . . . 9 ⊢ (𝑡:{1}⟶(0[,]1) → ((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩})) |
18 | unitssre 13422 | . . . . . . . . . . . 12 ⊢ (0[,]1) ⊆ ℝ | |
19 | ax-resscn 11113 | . . . . . . . . . . . 12 ⊢ ℝ ⊆ ℂ | |
20 | 18, 19 | sstri 3954 | . . . . . . . . . . 11 ⊢ (0[,]1) ⊆ ℂ |
21 | 20 | sseli 3941 | . . . . . . . . . 10 ⊢ ((𝑡‘1) ∈ (0[,]1) → (𝑡‘1) ∈ ℂ) |
22 | 21 | adantr 482 | . . . . . . . . 9 ⊢ (((𝑡‘1) ∈ (0[,]1) ∧ 𝑡 = {⟨1, (𝑡‘1)⟩}) → (𝑡‘1) ∈ ℂ) |
23 | 14, 17, 22 | 3syl 18 | . . . . . . . 8 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (𝑡‘1) ∈ ℂ) |
24 | fveq2 6843 | . . . . . . . . 9 ⊢ (𝑘 = 1 → (𝑡‘𝑘) = (𝑡‘1)) | |
25 | 24 | sumsn 15636 | . . . . . . . 8 ⊢ ((1 ∈ ℤ ∧ (𝑡‘1) ∈ ℂ) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
26 | 7, 23, 25 | sylancr 588 | . . . . . . 7 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ {1} (𝑡‘𝑘) = (𝑡‘1)) |
27 | 13, 26 | eqtrid 2785 | . . . . . 6 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = (𝑡‘1)) |
28 | 27 | eqeq1d 2735 | . . . . 5 ⊢ (𝑡 ∈ ((0[,]1) ↑m {1}) → (Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1 ↔ (𝑡‘1) = 1)) |
29 | 28 | rabbiia 3410 | . . . 4 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
30 | 12, 29 | eqtri 2761 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} |
31 | rabeqsn 4628 | . . . 4 ⊢ ({𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} ↔ ∀𝑡((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})) | |
32 | ovex 7391 | . . . . 5 ⊢ (0[,]1) ∈ V | |
33 | 1elunit 13393 | . . . . 5 ⊢ 1 ∈ (0[,]1) | |
34 | k0004lem3 42509 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ (0[,]1) ∈ V ∧ 1 ∈ (0[,]1)) → ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩})) | |
35 | 7, 32, 33, 34 | mp3an 1462 | . . . 4 ⊢ ((𝑡 ∈ ((0[,]1) ↑m {1}) ∧ (𝑡‘1) = 1) ↔ 𝑡 = {⟨1, 1⟩}) |
36 | 31, 35 | mpgbir 1802 | . . 3 ⊢ {𝑡 ∈ ((0[,]1) ↑m {1}) ∣ (𝑡‘1) = 1} = {{⟨1, 1⟩}} |
37 | 30, 36 | eqtri 2761 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(0 + 1))) ∣ Σ𝑘 ∈ (1...(0 + 1))(𝑡‘𝑘) = 1} = {{⟨1, 1⟩}} |
38 | 4, 37 | eqtri 2761 | 1 ⊢ (𝐴‘0) = {{⟨1, 1⟩}} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3406 Vcvv 3444 {csn 4587 ⟨cop 4593 ↦ cmpt 5189 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 ↑m cmap 8768 ℂcc 11054 ℝcr 11055 0cc0 11056 1c1 11057 + caddc 11059 ℕ0cn0 12418 ℤcz 12504 [,]cicc 13273 ...cfz 13430 Σcsu 15576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-icc 13277 df-fz 13431 df-fzo 13574 df-seq 13913 df-exp 13974 df-hash 14237 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 df-sum 15577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |