| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknon1loop | Structured version Visualization version GIF version | ||
| Description: If there is a loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
| clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| clwwlknon1loop | ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . . . 4 ⊢ ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) → 𝑤 = 〈“𝑋”〉) | |
| 2 | s1cl 14512 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → 〈“𝑋”〉 ∈ Word 𝑉) | |
| 3 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → 〈“𝑋”〉 ∈ Word 𝑉) |
| 4 | 3 | adantr 480 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → 〈“𝑋”〉 ∈ Word 𝑉) |
| 5 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑤 = 〈“𝑋”〉 → (𝑤 ∈ Word 𝑉 ↔ 〈“𝑋”〉 ∈ Word 𝑉)) | |
| 6 | 5 | adantl 481 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 ∈ Word 𝑉 ↔ 〈“𝑋”〉 ∈ Word 𝑉)) |
| 7 | 4, 6 | mpbird 257 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → 𝑤 ∈ Word 𝑉) |
| 8 | simpr 484 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → {𝑋} ∈ 𝐸) | |
| 9 | 8 | anim1ci 616 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
| 10 | 7, 9 | jca 511 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸))) |
| 11 | 10 | ex 412 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑤 = 〈“𝑋”〉 → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)))) |
| 12 | 1, 11 | impbid2 226 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) |
| 13 | 12 | alrimiv 1928 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) |
| 14 | clwwlknon1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 15 | clwwlknon1.c | . . . . . 6 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
| 16 | clwwlknon1.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
| 17 | 14, 15, 16 | clwwlknon1 30079 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
| 18 | 17 | eqeq1d 2735 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉})) |
| 19 | 18 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉})) |
| 20 | rabeqsn 4619 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) | |
| 21 | 19, 20 | bitrdi 287 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉))) |
| 22 | 13, 21 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2113 {crab 3396 {csn 4575 ‘cfv 6486 (class class class)co 7352 1c1 11014 Word cword 14422 〈“cs1 14505 Vtxcvtx 28976 Edgcedg 29027 ClWWalksNOncclwwlknon 30069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-lsw 14472 df-s1 14506 df-clwwlk 29964 df-clwwlkn 30007 df-clwwlknon 30070 |
| This theorem is referenced by: clwwlknon1sn 30082 clwwlknon1le1 30083 |
| Copyright terms: Public domain | W3C validator |