Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknon1loop | Structured version Visualization version GIF version |
Description: If there is a loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknon1loop | ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 767 | . . . 4 ⊢ ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) → 𝑤 = 〈“𝑋”〉) | |
2 | s1cl 14235 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → 〈“𝑋”〉 ∈ Word 𝑉) | |
3 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → 〈“𝑋”〉 ∈ Word 𝑉) |
4 | 3 | adantr 480 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → 〈“𝑋”〉 ∈ Word 𝑉) |
5 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑤 = 〈“𝑋”〉 → (𝑤 ∈ Word 𝑉 ↔ 〈“𝑋”〉 ∈ Word 𝑉)) | |
6 | 5 | adantl 481 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 ∈ Word 𝑉 ↔ 〈“𝑋”〉 ∈ Word 𝑉)) |
7 | 4, 6 | mpbird 256 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → 𝑤 ∈ Word 𝑉) |
8 | simpr 484 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → {𝑋} ∈ 𝐸) | |
9 | 8 | anim1ci 615 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
10 | 7, 9 | jca 511 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸))) |
11 | 10 | ex 412 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑤 = 〈“𝑋”〉 → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)))) |
12 | 1, 11 | impbid2 225 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) |
13 | 12 | alrimiv 1931 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) |
14 | clwwlknon1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
15 | clwwlknon1.c | . . . . . 6 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
16 | clwwlknon1.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
17 | 14, 15, 16 | clwwlknon1 28362 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
18 | 17 | eqeq1d 2740 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉})) |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉})) |
20 | rabeqsn 4599 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) | |
21 | 19, 20 | bitrdi 286 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉))) |
22 | 13, 21 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {crab 3067 {csn 4558 ‘cfv 6418 (class class class)co 7255 1c1 10803 Word cword 14145 〈“cs1 14228 Vtxcvtx 27269 Edgcedg 27320 ClWWalksNOncclwwlknon 28352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-lsw 14194 df-s1 14229 df-clwwlk 28247 df-clwwlkn 28290 df-clwwlknon 28353 |
This theorem is referenced by: clwwlknon1sn 28365 clwwlknon1le1 28366 |
Copyright terms: Public domain | W3C validator |