Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknon1loop | Structured version Visualization version GIF version |
Description: If there is a loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknon1loop | ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 768 | . . . 4 ⊢ ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) → 𝑤 = 〈“𝑋”〉) | |
2 | s1cl 14398 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → 〈“𝑋”〉 ∈ Word 𝑉) | |
3 | 2 | adantr 481 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → 〈“𝑋”〉 ∈ Word 𝑉) |
4 | 3 | adantr 481 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → 〈“𝑋”〉 ∈ Word 𝑉) |
5 | eleq1 2824 | . . . . . . . 8 ⊢ (𝑤 = 〈“𝑋”〉 → (𝑤 ∈ Word 𝑉 ↔ 〈“𝑋”〉 ∈ Word 𝑉)) | |
6 | 5 | adantl 482 | . . . . . . 7 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 ∈ Word 𝑉 ↔ 〈“𝑋”〉 ∈ Word 𝑉)) |
7 | 4, 6 | mpbird 256 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → 𝑤 ∈ Word 𝑉) |
8 | simpr 485 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → {𝑋} ∈ 𝐸) | |
9 | 8 | anim1ci 616 | . . . . . 6 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) |
10 | 7, 9 | jca 512 | . . . . 5 ⊢ (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = 〈“𝑋”〉) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸))) |
11 | 10 | ex 413 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑤 = 〈“𝑋”〉 → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)))) |
12 | 1, 11 | impbid2 225 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) |
13 | 12 | alrimiv 1929 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) |
14 | clwwlknon1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
15 | clwwlknon1.c | . . . . . 6 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
16 | clwwlknon1.e | . . . . . 6 ⊢ 𝐸 = (Edg‘𝐺) | |
17 | 14, 15, 16 | clwwlknon1 28662 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)}) |
18 | 17 | eqeq1d 2738 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉})) |
19 | 18 | adantr 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉})) |
20 | rabeqsn 4613 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)} = {〈“𝑋”〉} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉)) | |
21 | 19, 20 | bitrdi 286 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = 〈“𝑋”〉 ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = 〈“𝑋”〉))) |
22 | 13, 21 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∈ wcel 2105 {crab 3403 {csn 4572 ‘cfv 6473 (class class class)co 7329 1c1 10965 Word cword 14309 〈“cs1 14391 Vtxcvtx 27568 Edgcedg 27619 ClWWalksNOncclwwlknon 28652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-oadd 8363 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-xnn0 12399 df-z 12413 df-uz 12676 df-fz 13333 df-fzo 13476 df-hash 14138 df-word 14310 df-lsw 14358 df-s1 14392 df-clwwlk 28547 df-clwwlkn 28590 df-clwwlknon 28653 |
This theorem is referenced by: clwwlknon1sn 28665 clwwlknon1le1 28666 |
Copyright terms: Public domain | W3C validator |