MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1loop Structured version   Visualization version   GIF version

Theorem clwwlknon1loop 28462
Description: If there is a loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1loop ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {⟨“𝑋”⟩})

Proof of Theorem clwwlknon1loop
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simprl 768 . . . 4 ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) → 𝑤 = ⟨“𝑋”⟩)
2 s1cl 14307 . . . . . . . . 9 (𝑋𝑉 → ⟨“𝑋”⟩ ∈ Word 𝑉)
32adantr 481 . . . . . . . 8 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ⟨“𝑋”⟩ ∈ Word 𝑉)
43adantr 481 . . . . . . 7 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → ⟨“𝑋”⟩ ∈ Word 𝑉)
5 eleq1 2826 . . . . . . . 8 (𝑤 = ⟨“𝑋”⟩ → (𝑤 ∈ Word 𝑉 ↔ ⟨“𝑋”⟩ ∈ Word 𝑉))
65adantl 482 . . . . . . 7 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → (𝑤 ∈ Word 𝑉 ↔ ⟨“𝑋”⟩ ∈ Word 𝑉))
74, 6mpbird 256 . . . . . 6 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → 𝑤 ∈ Word 𝑉)
8 simpr 485 . . . . . . 7 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → {𝑋} ∈ 𝐸)
98anim1ci 616 . . . . . 6 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))
107, 9jca 512 . . . . 5 (((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑤 = ⟨“𝑋”⟩) → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)))
1110ex 413 . . . 4 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑤 = ⟨“𝑋”⟩ → (𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸))))
121, 11impbid2 225 . . 3 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = ⟨“𝑋”⟩))
1312alrimiv 1930 . 2 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = ⟨“𝑋”⟩))
14 clwwlknon1.v . . . . . 6 𝑉 = (Vtx‘𝐺)
15 clwwlknon1.c . . . . . 6 𝐶 = (ClWWalksNOn‘𝐺)
16 clwwlknon1.e . . . . . 6 𝐸 = (Edg‘𝐺)
1714, 15, 16clwwlknon1 28461 . . . . 5 (𝑋𝑉 → (𝑋𝐶1) = {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)})
1817eqeq1d 2740 . . . 4 (𝑋𝑉 → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = {⟨“𝑋”⟩}))
1918adantr 481 . . 3 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ {𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = {⟨“𝑋”⟩}))
20 rabeqsn 4602 . . 3 ({𝑤 ∈ Word 𝑉 ∣ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)} = {⟨“𝑋”⟩} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = ⟨“𝑋”⟩))
2119, 20bitrdi 287 . 2 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑤 = ⟨“𝑋”⟩ ∧ {𝑋} ∈ 𝐸)) ↔ 𝑤 = ⟨“𝑋”⟩)))
2213, 21mpbird 256 1 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {⟨“𝑋”⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  {crab 3068  {csn 4561  cfv 6433  (class class class)co 7275  1c1 10872  Word cword 14217  ⟨“cs1 14300  Vtxcvtx 27366  Edgcedg 27417  ClWWalksNOncclwwlknon 28451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-s1 14301  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452
This theorem is referenced by:  clwwlknon1sn  28464  clwwlknon1le1  28465
  Copyright terms: Public domain W3C validator