![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknon1loop | Structured version Visualization version GIF version |
Description: If there is a loop at vertex π, the set of (closed) walks on π of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of π. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon1.v | β’ π = (VtxβπΊ) |
clwwlknon1.c | β’ πΆ = (ClWWalksNOnβπΊ) |
clwwlknon1.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
clwwlknon1loop | β’ ((π β π β§ {π} β πΈ) β (ππΆ1) = {β¨βπββ©}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 769 | . . . 4 β’ ((π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)) β π€ = β¨βπββ©) | |
2 | s1cl 14551 | . . . . . . . . 9 β’ (π β π β β¨βπββ© β Word π) | |
3 | 2 | adantr 481 | . . . . . . . 8 β’ ((π β π β§ {π} β πΈ) β β¨βπββ© β Word π) |
4 | 3 | adantr 481 | . . . . . . 7 β’ (((π β π β§ {π} β πΈ) β§ π€ = β¨βπββ©) β β¨βπββ© β Word π) |
5 | eleq1 2821 | . . . . . . . 8 β’ (π€ = β¨βπββ© β (π€ β Word π β β¨βπββ© β Word π)) | |
6 | 5 | adantl 482 | . . . . . . 7 β’ (((π β π β§ {π} β πΈ) β§ π€ = β¨βπββ©) β (π€ β Word π β β¨βπββ© β Word π)) |
7 | 4, 6 | mpbird 256 | . . . . . 6 β’ (((π β π β§ {π} β πΈ) β§ π€ = β¨βπββ©) β π€ β Word π) |
8 | simpr 485 | . . . . . . 7 β’ ((π β π β§ {π} β πΈ) β {π} β πΈ) | |
9 | 8 | anim1ci 616 | . . . . . 6 β’ (((π β π β§ {π} β πΈ) β§ π€ = β¨βπββ©) β (π€ = β¨βπββ© β§ {π} β πΈ)) |
10 | 7, 9 | jca 512 | . . . . 5 β’ (((π β π β§ {π} β πΈ) β§ π€ = β¨βπββ©) β (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ))) |
11 | 10 | ex 413 | . . . 4 β’ ((π β π β§ {π} β πΈ) β (π€ = β¨βπββ© β (π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)))) |
12 | 1, 11 | impbid2 225 | . . 3 β’ ((π β π β§ {π} β πΈ) β ((π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)) β π€ = β¨βπββ©)) |
13 | 12 | alrimiv 1930 | . 2 β’ ((π β π β§ {π} β πΈ) β βπ€((π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)) β π€ = β¨βπββ©)) |
14 | clwwlknon1.v | . . . . . 6 β’ π = (VtxβπΊ) | |
15 | clwwlknon1.c | . . . . . 6 β’ πΆ = (ClWWalksNOnβπΊ) | |
16 | clwwlknon1.e | . . . . . 6 β’ πΈ = (EdgβπΊ) | |
17 | 14, 15, 16 | clwwlknon1 29347 | . . . . 5 β’ (π β π β (ππΆ1) = {π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)}) |
18 | 17 | eqeq1d 2734 | . . . 4 β’ (π β π β ((ππΆ1) = {β¨βπββ©} β {π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)} = {β¨βπββ©})) |
19 | 18 | adantr 481 | . . 3 β’ ((π β π β§ {π} β πΈ) β ((ππΆ1) = {β¨βπββ©} β {π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)} = {β¨βπββ©})) |
20 | rabeqsn 4669 | . . 3 β’ ({π€ β Word π β£ (π€ = β¨βπββ© β§ {π} β πΈ)} = {β¨βπββ©} β βπ€((π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)) β π€ = β¨βπββ©)) | |
21 | 19, 20 | bitrdi 286 | . 2 β’ ((π β π β§ {π} β πΈ) β ((ππΆ1) = {β¨βπββ©} β βπ€((π€ β Word π β§ (π€ = β¨βπββ© β§ {π} β πΈ)) β π€ = β¨βπββ©))) |
22 | 13, 21 | mpbird 256 | 1 β’ ((π β π β§ {π} β πΈ) β (ππΆ1) = {β¨βπββ©}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 βwal 1539 = wceq 1541 β wcel 2106 {crab 3432 {csn 4628 βcfv 6543 (class class class)co 7408 1c1 11110 Word cword 14463 β¨βcs1 14544 Vtxcvtx 28253 Edgcedg 28304 ClWWalksNOncclwwlknon 29337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-lsw 14512 df-s1 14545 df-clwwlk 29232 df-clwwlkn 29275 df-clwwlknon 29338 |
This theorem is referenced by: clwwlknon1sn 29350 clwwlknon1le1 29351 |
Copyright terms: Public domain | W3C validator |