MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1loop Structured version   Visualization version   GIF version

Theorem clwwlknon1loop 29348
Description: If there is a loop at vertex 𝑋, the set of (closed) walks on 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) (Proof shortened by AV, 25-Mar-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtxβ€˜πΊ)
clwwlknon1.c 𝐢 = (ClWWalksNOnβ€˜πΊ)
clwwlknon1.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
clwwlknon1loop ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ (𝑋𝐢1) = {βŸ¨β€œπ‘‹β€βŸ©})

Proof of Theorem clwwlknon1loop
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . 4 ((𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)) β†’ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©)
2 s1cl 14551 . . . . . . . . 9 (𝑋 ∈ 𝑉 β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
32adantr 481 . . . . . . . 8 ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
43adantr 481 . . . . . . 7 (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©) β†’ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉)
5 eleq1 2821 . . . . . . . 8 (𝑀 = βŸ¨β€œπ‘‹β€βŸ© β†’ (𝑀 ∈ Word 𝑉 ↔ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉))
65adantl 482 . . . . . . 7 (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©) β†’ (𝑀 ∈ Word 𝑉 ↔ βŸ¨β€œπ‘‹β€βŸ© ∈ Word 𝑉))
74, 6mpbird 256 . . . . . 6 (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©) β†’ 𝑀 ∈ Word 𝑉)
8 simpr 485 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ {𝑋} ∈ 𝐸)
98anim1ci 616 . . . . . 6 (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©) β†’ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))
107, 9jca 512 . . . . 5 (((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) ∧ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©) β†’ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)))
1110ex 413 . . . 4 ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© β†’ (𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸))))
121, 11impbid2 225 . . 3 ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ ((𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)) ↔ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©))
1312alrimiv 1930 . 2 ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ βˆ€π‘€((𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)) ↔ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©))
14 clwwlknon1.v . . . . . 6 𝑉 = (Vtxβ€˜πΊ)
15 clwwlknon1.c . . . . . 6 𝐢 = (ClWWalksNOnβ€˜πΊ)
16 clwwlknon1.e . . . . . 6 𝐸 = (Edgβ€˜πΊ)
1714, 15, 16clwwlknon1 29347 . . . . 5 (𝑋 ∈ 𝑉 β†’ (𝑋𝐢1) = {𝑀 ∈ Word 𝑉 ∣ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)})
1817eqeq1d 2734 . . . 4 (𝑋 ∈ 𝑉 β†’ ((𝑋𝐢1) = {βŸ¨β€œπ‘‹β€βŸ©} ↔ {𝑀 ∈ Word 𝑉 ∣ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)} = {βŸ¨β€œπ‘‹β€βŸ©}))
1918adantr 481 . . 3 ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ ((𝑋𝐢1) = {βŸ¨β€œπ‘‹β€βŸ©} ↔ {𝑀 ∈ Word 𝑉 ∣ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)} = {βŸ¨β€œπ‘‹β€βŸ©}))
20 rabeqsn 4669 . . 3 ({𝑀 ∈ Word 𝑉 ∣ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)} = {βŸ¨β€œπ‘‹β€βŸ©} ↔ βˆ€π‘€((𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)) ↔ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©))
2119, 20bitrdi 286 . 2 ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ ((𝑋𝐢1) = {βŸ¨β€œπ‘‹β€βŸ©} ↔ βˆ€π‘€((𝑀 ∈ Word 𝑉 ∧ (𝑀 = βŸ¨β€œπ‘‹β€βŸ© ∧ {𝑋} ∈ 𝐸)) ↔ 𝑀 = βŸ¨β€œπ‘‹β€βŸ©)))
2213, 21mpbird 256 1 ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) β†’ (𝑋𝐢1) = {βŸ¨β€œπ‘‹β€βŸ©})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  {crab 3432  {csn 4628  β€˜cfv 6543  (class class class)co 7408  1c1 11110  Word cword 14463  βŸ¨β€œcs1 14544  Vtxcvtx 28253  Edgcedg 28304  ClWWalksNOncclwwlknon 29337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-lsw 14512  df-s1 14545  df-clwwlk 29232  df-clwwlkn 29275  df-clwwlknon 29338
This theorem is referenced by:  clwwlknon1sn  29350  clwwlknon1le1  29351
  Copyright terms: Public domain W3C validator