MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabidim1 Structured version   Visualization version   GIF version

Theorem rabidim1 3428
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
rabidim1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)

Proof of Theorem rabidim1
StepHypRef Expression
1 rabid 3427 . 2 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
21simplbi 497 1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {crab 3405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406
This theorem is referenced by:  frgrwopreglem5  30250  frgrwopreg  30252  rabexgfGS  32428  ssrab2f  45111  infnsuprnmpt  45244  preimagelt  46697  preimalegt  46698  pimrecltpos  46706  pimrecltneg  46722  smfresal  46786  smfpimbor1lem2  46797  smflimmpt  46808  smfsupmpt  46813  smfinfmpt  46817  smflimsuplem7  46824  smflimsuplem8  46825  smflimsupmpt  46827  smfliminfmpt  46830  fsupdm  46840  finfdm  46844
  Copyright terms: Public domain W3C validator