![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabidim1 | Structured version Visualization version GIF version |
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabidim1 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid 3453 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | simplbi 499 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 |
This theorem is referenced by: frgrwopreglem5 29574 frgrwopreg 29576 rabexgfGS 31739 ssrab2f 43806 infnsuprnmpt 43954 preimagelt 45415 preimalegt 45416 pimrecltpos 45424 pimrecltneg 45440 smfresal 45504 smfpimbor1lem2 45515 smflimmpt 45526 smfsupmpt 45531 smfinfmpt 45535 smflimsuplem7 45542 smflimsuplem8 45543 smflimsupmpt 45545 smfliminfmpt 45548 fsupdm 45558 finfdm 45562 |
Copyright terms: Public domain | W3C validator |