![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabidim1 | Structured version Visualization version GIF version |
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabidim1 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid 3465 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 |
This theorem is referenced by: frgrwopreglem5 30353 frgrwopreg 30355 rabexgfGS 32527 ssrab2f 45019 infnsuprnmpt 45159 preimagelt 46620 preimalegt 46621 pimrecltpos 46629 pimrecltneg 46645 smfresal 46709 smfpimbor1lem2 46720 smflimmpt 46731 smfsupmpt 46736 smfinfmpt 46740 smflimsuplem7 46747 smflimsuplem8 46748 smflimsupmpt 46750 smfliminfmpt 46753 fsupdm 46763 finfdm 46767 |
Copyright terms: Public domain | W3C validator |