MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabidim1 Structured version   Visualization version   GIF version

Theorem rabidim1 3438
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
rabidim1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)

Proof of Theorem rabidim1
StepHypRef Expression
1 rabid 3437 . 2 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
21simplbi 497 1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {crab 3415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416
This theorem is referenced by:  frgrwopreglem5  30302  frgrwopreg  30304  rabexgfGS  32480  ssrab2f  45141  infnsuprnmpt  45274  preimagelt  46728  preimalegt  46729  pimrecltpos  46737  pimrecltneg  46753  smfresal  46817  smfpimbor1lem2  46828  smflimmpt  46839  smfsupmpt  46844  smfinfmpt  46848  smflimsuplem7  46855  smflimsuplem8  46856  smflimsupmpt  46858  smfliminfmpt  46861  fsupdm  46871  finfdm  46875
  Copyright terms: Public domain W3C validator