| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabidim1 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabidim1 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid 3416 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: frgrwopreglem5 30301 frgrwopreg 30303 rabexgfGS 32479 ssrab2f 45224 infnsuprnmpt 45357 preimagelt 46807 preimalegt 46808 pimrecltpos 46816 pimrecltneg 46832 smfresal 46896 smfpimbor1lem2 46907 smflimmpt 46918 smfsupmpt 46923 smfinfmpt 46927 smflimsuplem7 46934 smflimsuplem8 46935 smflimsupmpt 46937 smfliminfmpt 46940 fsupdm 46950 finfdm 46954 |
| Copyright terms: Public domain | W3C validator |