| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabidim1 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabidim1 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid 3430 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 |
| This theorem is referenced by: frgrwopreglem5 30257 frgrwopreg 30259 rabexgfGS 32435 ssrab2f 45118 infnsuprnmpt 45251 preimagelt 46704 preimalegt 46705 pimrecltpos 46713 pimrecltneg 46729 smfresal 46793 smfpimbor1lem2 46804 smflimmpt 46815 smfsupmpt 46820 smfinfmpt 46824 smflimsuplem7 46831 smflimsuplem8 46832 smflimsupmpt 46834 smfliminfmpt 46837 fsupdm 46847 finfdm 46851 |
| Copyright terms: Public domain | W3C validator |