![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabidim1 | Structured version Visualization version GIF version |
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabidim1 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabid 3295 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | simplbi 492 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 {crab 3091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-tru 1657 df-ex 1876 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-rab 3096 |
This theorem is referenced by: frgrwopreglem5 27662 frgrwopreg 27664 ssrab2f 40046 infnsuprnmpt 40200 pimrecltpos 41653 pimrecltneg 41667 smfresal 41729 smfpimbor1lem2 41740 smflimmpt 41750 smfsupmpt 41755 smfinfmpt 41759 smflimsuplem7 41766 smflimsuplem8 41767 smflimsupmpt 41769 smfliminfmpt 41772 |
Copyright terms: Public domain | W3C validator |