| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabidim1 | Structured version Visualization version GIF version | ||
| Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabidim1 | ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid 3427 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 |
| This theorem is referenced by: frgrwopreglem5 30250 frgrwopreg 30252 rabexgfGS 32428 ssrab2f 45111 infnsuprnmpt 45244 preimagelt 46697 preimalegt 46698 pimrecltpos 46706 pimrecltneg 46722 smfresal 46786 smfpimbor1lem2 46797 smflimmpt 46808 smfsupmpt 46813 smfinfmpt 46817 smflimsuplem7 46824 smflimsuplem8 46825 smflimsupmpt 46827 smfliminfmpt 46830 fsupdm 46840 finfdm 46844 |
| Copyright terms: Public domain | W3C validator |