Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashrabsn1 | Structured version Visualization version GIF version |
Description: If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
Ref | Expression |
---|---|
hashrabsn1 | ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
2 | rabrsn 4660 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
3 | fveqeq2 6783 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 ↔ (♯‘∅) = 1)) | |
4 | hash0 14082 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
5 | 4 | eqeq1i 2743 | . . . . 5 ⊢ ((♯‘∅) = 1 ↔ 0 = 1) |
6 | 0ne1 12044 | . . . . . 6 ⊢ 0 ≠ 1 | |
7 | eqneqall 2954 | . . . . . 6 ⊢ (0 = 1 → (0 ≠ 1 → [𝐴 / 𝑥]𝜑)) | |
8 | 6, 7 | mpi 20 | . . . . 5 ⊢ (0 = 1 → [𝐴 / 𝑥]𝜑) |
9 | 5, 8 | sylbi 216 | . . . 4 ⊢ ((♯‘∅) = 1 → [𝐴 / 𝑥]𝜑) |
10 | 3, 9 | syl6bi 252 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
11 | snidg 4595 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
12 | 11 | adantr 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝐴}) |
13 | eleq2 2827 | . . . . . . . . 9 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴})) | |
14 | 13 | adantl 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴})) |
15 | 12, 14 | mpbird 256 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑}) |
16 | nfcv 2907 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝐴} | |
17 | 16 | elrabsf 3764 | . . . . . . . 8 ⊢ (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ (𝐴 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑)) |
18 | 17 | simprbi 497 | . . . . . . 7 ⊢ (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} → [𝐴 / 𝑥]𝜑) |
19 | 15, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → [𝐴 / 𝑥]𝜑) |
20 | 19 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
21 | 20 | ex 413 | . . . 4 ⊢ (𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
22 | snprc 4653 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
23 | eqeq2 2750 | . . . . . 6 ⊢ ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅)) | |
24 | ax-1ne0 10940 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
25 | eqneqall 2954 | . . . . . . . . . 10 ⊢ (1 = 0 → (1 ≠ 0 → [𝐴 / 𝑥]𝜑)) | |
26 | 24, 25 | mpi 20 | . . . . . . . . 9 ⊢ (1 = 0 → [𝐴 / 𝑥]𝜑) |
27 | 26 | eqcoms 2746 | . . . . . . . 8 ⊢ (0 = 1 → [𝐴 / 𝑥]𝜑) |
28 | 5, 27 | sylbi 216 | . . . . . . 7 ⊢ ((♯‘∅) = 1 → [𝐴 / 𝑥]𝜑) |
29 | 3, 28 | syl6bi 252 | . . . . . 6 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
30 | 23, 29 | syl6bi 252 | . . . . 5 ⊢ ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
31 | 22, 30 | sylbi 216 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
32 | 21, 31 | pm2.61i 182 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
33 | 10, 32 | jaoi 854 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
34 | 1, 2, 33 | mp2b 10 | 1 ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 [wsbc 3716 ∅c0 4256 {csn 4561 ‘cfv 6433 0cc0 10871 1c1 10872 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |