|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hashrabsn1 | Structured version Visualization version GIF version | ||
| Description: If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| hashrabsn1 | ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
| 2 | rabrsn 4723 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
| 3 | fveqeq2 6914 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 ↔ (♯‘∅) = 1)) | |
| 4 | hash0 14407 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
| 5 | 4 | eqeq1i 2741 | . . . . 5 ⊢ ((♯‘∅) = 1 ↔ 0 = 1) | 
| 6 | 0ne1 12338 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 7 | eqneqall 2950 | . . . . . 6 ⊢ (0 = 1 → (0 ≠ 1 → [𝐴 / 𝑥]𝜑)) | |
| 8 | 6, 7 | mpi 20 | . . . . 5 ⊢ (0 = 1 → [𝐴 / 𝑥]𝜑) | 
| 9 | 5, 8 | sylbi 217 | . . . 4 ⊢ ((♯‘∅) = 1 → [𝐴 / 𝑥]𝜑) | 
| 10 | 3, 9 | biimtrdi 253 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) | 
| 11 | snidg 4659 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝐴}) | 
| 13 | eleq2 2829 | . . . . . . . . 9 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴})) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴})) | 
| 15 | 12, 14 | mpbird 257 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑}) | 
| 16 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝐴} | |
| 17 | 16 | elrabsf 3833 | . . . . . . . 8 ⊢ (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ (𝐴 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑)) | 
| 18 | 17 | simprbi 496 | . . . . . . 7 ⊢ (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} → [𝐴 / 𝑥]𝜑) | 
| 19 | 15, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → [𝐴 / 𝑥]𝜑) | 
| 20 | 19 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) | 
| 21 | 20 | ex 412 | . . . 4 ⊢ (𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) | 
| 22 | snprc 4716 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 23 | eqeq2 2748 | . . . . . 6 ⊢ ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅)) | |
| 24 | ax-1ne0 11225 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
| 25 | eqneqall 2950 | . . . . . . . . . 10 ⊢ (1 = 0 → (1 ≠ 0 → [𝐴 / 𝑥]𝜑)) | |
| 26 | 24, 25 | mpi 20 | . . . . . . . . 9 ⊢ (1 = 0 → [𝐴 / 𝑥]𝜑) | 
| 27 | 26 | eqcoms 2744 | . . . . . . . 8 ⊢ (0 = 1 → [𝐴 / 𝑥]𝜑) | 
| 28 | 5, 27 | sylbi 217 | . . . . . . 7 ⊢ ((♯‘∅) = 1 → [𝐴 / 𝑥]𝜑) | 
| 29 | 3, 28 | biimtrdi 253 | . . . . . 6 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) | 
| 30 | 23, 29 | biimtrdi 253 | . . . . 5 ⊢ ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) | 
| 31 | 22, 30 | sylbi 217 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) | 
| 32 | 21, 31 | pm2.61i 182 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) | 
| 33 | 10, 32 | jaoi 857 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) | 
| 34 | 1, 2, 33 | mp2b 10 | 1 ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3435 Vcvv 3479 [wsbc 3787 ∅c0 4332 {csn 4625 ‘cfv 6560 0cc0 11156 1c1 11157 ♯chash 14370 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-hash 14371 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |