![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashrabsn1 | Structured version Visualization version GIF version |
Description: If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
Ref | Expression |
---|---|
hashrabsn1 | ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
2 | rabrsn 4724 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
3 | fveqeq2 6900 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 ↔ (♯‘∅) = 1)) | |
4 | hash0 14356 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
5 | 4 | eqeq1i 2730 | . . . . 5 ⊢ ((♯‘∅) = 1 ↔ 0 = 1) |
6 | 0ne1 12311 | . . . . . 6 ⊢ 0 ≠ 1 | |
7 | eqneqall 2941 | . . . . . 6 ⊢ (0 = 1 → (0 ≠ 1 → [𝐴 / 𝑥]𝜑)) | |
8 | 6, 7 | mpi 20 | . . . . 5 ⊢ (0 = 1 → [𝐴 / 𝑥]𝜑) |
9 | 5, 8 | sylbi 216 | . . . 4 ⊢ ((♯‘∅) = 1 → [𝐴 / 𝑥]𝜑) |
10 | 3, 9 | biimtrdi 252 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
11 | snidg 4658 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
12 | 11 | adantr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝐴}) |
13 | eleq2 2814 | . . . . . . . . 9 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴})) | |
14 | 13 | adantl 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴})) |
15 | 12, 14 | mpbird 256 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑}) |
16 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝐴} | |
17 | 16 | elrabsf 3818 | . . . . . . . 8 ⊢ (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ (𝐴 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑)) |
18 | 17 | simprbi 495 | . . . . . . 7 ⊢ (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} → [𝐴 / 𝑥]𝜑) |
19 | 15, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → [𝐴 / 𝑥]𝜑) |
20 | 19 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
21 | 20 | ex 411 | . . . 4 ⊢ (𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
22 | snprc 4717 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
23 | eqeq2 2737 | . . . . . 6 ⊢ ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅)) | |
24 | ax-1ne0 11205 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
25 | eqneqall 2941 | . . . . . . . . . 10 ⊢ (1 = 0 → (1 ≠ 0 → [𝐴 / 𝑥]𝜑)) | |
26 | 24, 25 | mpi 20 | . . . . . . . . 9 ⊢ (1 = 0 → [𝐴 / 𝑥]𝜑) |
27 | 26 | eqcoms 2733 | . . . . . . . 8 ⊢ (0 = 1 → [𝐴 / 𝑥]𝜑) |
28 | 5, 27 | sylbi 216 | . . . . . . 7 ⊢ ((♯‘∅) = 1 → [𝐴 / 𝑥]𝜑) |
29 | 3, 28 | biimtrdi 252 | . . . . . 6 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
30 | 23, 29 | biimtrdi 252 | . . . . 5 ⊢ ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
31 | 22, 30 | sylbi 216 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
32 | 21, 31 | pm2.61i 182 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
33 | 10, 32 | jaoi 855 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
34 | 1, 2, 33 | mp2b 10 | 1 ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 {crab 3419 Vcvv 3463 [wsbc 3769 ∅c0 4318 {csn 4624 ‘cfv 6542 0cc0 11136 1c1 11137 ♯chash 14319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-hash 14320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |