| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashrabsn1 | Structured version Visualization version GIF version | ||
| Description: If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
| Ref | Expression |
|---|---|
| hashrabsn1 | ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
| 2 | rabrsn 4684 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
| 3 | fveqeq2 6849 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 ↔ (♯‘∅) = 1)) | |
| 4 | hash0 14308 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
| 5 | 4 | eqeq1i 2734 | . . . . 5 ⊢ ((♯‘∅) = 1 ↔ 0 = 1) |
| 6 | 0ne1 12233 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 7 | eqneqall 2936 | . . . . . 6 ⊢ (0 = 1 → (0 ≠ 1 → [𝐴 / 𝑥]𝜑)) | |
| 8 | 6, 7 | mpi 20 | . . . . 5 ⊢ (0 = 1 → [𝐴 / 𝑥]𝜑) |
| 9 | 5, 8 | sylbi 217 | . . . 4 ⊢ ((♯‘∅) = 1 → [𝐴 / 𝑥]𝜑) |
| 10 | 3, 9 | biimtrdi 253 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
| 11 | snidg 4620 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → 𝐴 ∈ {𝐴}) | |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝐴}) |
| 13 | eleq2 2817 | . . . . . . . . 9 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴})) | |
| 14 | 13 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝐴 ∈ {𝐴})) |
| 15 | 12, 14 | mpbird 257 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → 𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑}) |
| 16 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑥{𝐴} | |
| 17 | 16 | elrabsf 3796 | . . . . . . . 8 ⊢ (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ (𝐴 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑)) |
| 18 | 17 | simprbi 496 | . . . . . . 7 ⊢ (𝐴 ∈ {𝑥 ∈ {𝐴} ∣ 𝜑} → [𝐴 / 𝑥]𝜑) |
| 19 | 15, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → [𝐴 / 𝑥]𝜑) |
| 20 | 19 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
| 21 | 20 | ex 412 | . . . 4 ⊢ (𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
| 22 | snprc 4677 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 23 | eqeq2 2741 | . . . . . 6 ⊢ ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} ↔ {𝑥 ∈ {𝐴} ∣ 𝜑} = ∅)) | |
| 24 | ax-1ne0 11113 | . . . . . . . . . 10 ⊢ 1 ≠ 0 | |
| 25 | eqneqall 2936 | . . . . . . . . . 10 ⊢ (1 = 0 → (1 ≠ 0 → [𝐴 / 𝑥]𝜑)) | |
| 26 | 24, 25 | mpi 20 | . . . . . . . . 9 ⊢ (1 = 0 → [𝐴 / 𝑥]𝜑) |
| 27 | 26 | eqcoms 2737 | . . . . . . . 8 ⊢ (0 = 1 → [𝐴 / 𝑥]𝜑) |
| 28 | 5, 27 | sylbi 217 | . . . . . . 7 ⊢ ((♯‘∅) = 1 → [𝐴 / 𝑥]𝜑) |
| 29 | 3, 28 | biimtrdi 253 | . . . . . 6 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
| 30 | 23, 29 | biimtrdi 253 | . . . . 5 ⊢ ({𝐴} = ∅ → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
| 31 | 22, 30 | sylbi 217 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑))) |
| 32 | 21, 31 | pm2.61i 182 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
| 33 | 10, 32 | jaoi 857 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑)) |
| 34 | 1, 2, 33 | mp2b 10 | 1 ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 1 → [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 [wsbc 3750 ∅c0 4292 {csn 4585 ‘cfv 6499 0cc0 11044 1c1 11045 ♯chash 14271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |