![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashrabsn01 | Structured version Visualization version GIF version |
Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
Ref | Expression |
---|---|
hashrabsn01 | ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
2 | rabrsn 4683 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
3 | fveqeq2 6848 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘∅) = 𝑁)) | |
4 | eqcom 2743 | . . . . . . 7 ⊢ ((♯‘∅) = 𝑁 ↔ 𝑁 = (♯‘∅)) | |
5 | 4 | biimpi 215 | . . . . . 6 ⊢ ((♯‘∅) = 𝑁 → 𝑁 = (♯‘∅)) |
6 | hash0 14259 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
7 | 5, 6 | eqtrdi 2792 | . . . . 5 ⊢ ((♯‘∅) = 𝑁 → 𝑁 = 0) |
8 | 7 | orcd 871 | . . . 4 ⊢ ((♯‘∅) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
9 | 3, 8 | syl6bi 252 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
10 | fveqeq2 6848 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘{𝐴}) = 𝑁)) | |
11 | eqcom 2743 | . . . . . . . . 9 ⊢ ((♯‘{𝐴}) = 𝑁 ↔ 𝑁 = (♯‘{𝐴})) | |
12 | 11 | biimpi 215 | . . . . . . . 8 ⊢ ((♯‘{𝐴}) = 𝑁 → 𝑁 = (♯‘{𝐴})) |
13 | hashsng 14261 | . . . . . . . 8 ⊢ (𝐴 ∈ V → (♯‘{𝐴}) = 1) | |
14 | 12, 13 | sylan9eqr 2798 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → 𝑁 = 1) |
15 | 14 | olcd 872 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)) |
16 | 15 | ex 413 | . . . . 5 ⊢ (𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
17 | snprc 4676 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
18 | fveqeq2 6848 | . . . . . . 7 ⊢ ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 ↔ (♯‘∅) = 𝑁)) | |
19 | 18, 8 | syl6bi 252 | . . . . . 6 ⊢ ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
20 | 17, 19 | sylbi 216 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
21 | 16, 20 | pm2.61i 182 | . . . 4 ⊢ ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
22 | 10, 21 | syl6bi 252 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
23 | 9, 22 | jaoi 855 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
24 | 1, 2, 23 | mp2b 10 | 1 ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 {crab 3405 Vcvv 3443 ∅c0 4280 {csn 4584 ‘cfv 6493 0cc0 11047 1c1 11048 ♯chash 14222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7668 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7309 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7799 df-1st 7917 df-2nd 7918 df-frecs 8208 df-wrecs 8239 df-recs 8313 df-rdg 8352 df-1o 8408 df-er 8644 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9871 df-pnf 11187 df-mnf 11188 df-xr 11189 df-ltxr 11190 df-le 11191 df-sub 11383 df-neg 11384 df-nn 12150 df-n0 12410 df-z 12496 df-uz 12760 df-fz 13417 df-hash 14223 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |