MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashrabsn01 Structured version   Visualization version   GIF version

Theorem hashrabsn01 14280
Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.)
Assertion
Ref Expression
hashrabsn01 ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem hashrabsn01
StepHypRef Expression
1 eqid 2737 . 2 {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑}
2 rabrsn 4690 . 2 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}))
3 fveqeq2 6856 . . . 4 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘∅) = 𝑁))
4 eqcom 2744 . . . . . . 7 ((♯‘∅) = 𝑁𝑁 = (♯‘∅))
54biimpi 215 . . . . . 6 ((♯‘∅) = 𝑁𝑁 = (♯‘∅))
6 hash0 14274 . . . . . 6 (♯‘∅) = 0
75, 6eqtrdi 2793 . . . . 5 ((♯‘∅) = 𝑁𝑁 = 0)
87orcd 872 . . . 4 ((♯‘∅) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))
93, 8syl6bi 253 . . 3 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
10 fveqeq2 6856 . . . 4 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘{𝐴}) = 𝑁))
11 eqcom 2744 . . . . . . . . 9 ((♯‘{𝐴}) = 𝑁𝑁 = (♯‘{𝐴}))
1211biimpi 215 . . . . . . . 8 ((♯‘{𝐴}) = 𝑁𝑁 = (♯‘{𝐴}))
13 hashsng 14276 . . . . . . . 8 (𝐴 ∈ V → (♯‘{𝐴}) = 1)
1412, 13sylan9eqr 2799 . . . . . . 7 ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → 𝑁 = 1)
1514olcd 873 . . . . . 6 ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1))
1615ex 414 . . . . 5 (𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
17 snprc 4683 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
18 fveqeq2 6856 . . . . . . 7 ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 ↔ (♯‘∅) = 𝑁))
1918, 8syl6bi 253 . . . . . 6 ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
2017, 19sylbi 216 . . . . 5 𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
2116, 20pm2.61i 182 . . . 4 ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))
2210, 21syl6bi 253 . . 3 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
239, 22jaoi 856 . 2 (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
241, 2, 23mp2b 10 1 ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  {crab 3410  Vcvv 3448  c0 4287  {csn 4591  cfv 6501  0cc0 11058  1c1 11059  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator