![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashrabsn01 | Structured version Visualization version GIF version |
Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
Ref | Expression |
---|---|
hashrabsn01 | ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
2 | rabrsn 4729 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
3 | fveqeq2 6901 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘∅) = 𝑁)) | |
4 | eqcom 2740 | . . . . . . 7 ⊢ ((♯‘∅) = 𝑁 ↔ 𝑁 = (♯‘∅)) | |
5 | 4 | biimpi 215 | . . . . . 6 ⊢ ((♯‘∅) = 𝑁 → 𝑁 = (♯‘∅)) |
6 | hash0 14327 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
7 | 5, 6 | eqtrdi 2789 | . . . . 5 ⊢ ((♯‘∅) = 𝑁 → 𝑁 = 0) |
8 | 7 | orcd 872 | . . . 4 ⊢ ((♯‘∅) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
9 | 3, 8 | syl6bi 253 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
10 | fveqeq2 6901 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘{𝐴}) = 𝑁)) | |
11 | eqcom 2740 | . . . . . . . . 9 ⊢ ((♯‘{𝐴}) = 𝑁 ↔ 𝑁 = (♯‘{𝐴})) | |
12 | 11 | biimpi 215 | . . . . . . . 8 ⊢ ((♯‘{𝐴}) = 𝑁 → 𝑁 = (♯‘{𝐴})) |
13 | hashsng 14329 | . . . . . . . 8 ⊢ (𝐴 ∈ V → (♯‘{𝐴}) = 1) | |
14 | 12, 13 | sylan9eqr 2795 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → 𝑁 = 1) |
15 | 14 | olcd 873 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)) |
16 | 15 | ex 414 | . . . . 5 ⊢ (𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
17 | snprc 4722 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
18 | fveqeq2 6901 | . . . . . . 7 ⊢ ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 ↔ (♯‘∅) = 𝑁)) | |
19 | 18, 8 | syl6bi 253 | . . . . . 6 ⊢ ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
20 | 17, 19 | sylbi 216 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
21 | 16, 20 | pm2.61i 182 | . . . 4 ⊢ ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
22 | 10, 21 | syl6bi 253 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
23 | 9, 22 | jaoi 856 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
24 | 1, 2, 23 | mp2b 10 | 1 ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 ∅c0 4323 {csn 4629 ‘cfv 6544 0cc0 11110 1c1 11111 ♯chash 14290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |