![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashrabrsn | Structured version Visualization version GIF version |
Description: The size of a restricted class abstraction restricted to a singleton is a nonnegative integer. (Contributed by Alexander van der Vekens, 22-Dec-2017.) |
Ref | Expression |
---|---|
hashrabrsn | ⊢ (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) ∈ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
2 | rabrsn 4749 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
3 | fveq2 6920 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = (♯‘∅)) | |
4 | hash0 14416 | . . . . 5 ⊢ (♯‘∅) = 0 | |
5 | 0nn0 12568 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
6 | 4, 5 | eqeltri 2840 | . . . 4 ⊢ (♯‘∅) ∈ ℕ0 |
7 | 3, 6 | eqeltrdi 2852 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) ∈ ℕ0) |
8 | fveq2 6920 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = (♯‘{𝐴})) | |
9 | hashsng 14418 | . . . . . 6 ⊢ (𝐴 ∈ V → (♯‘{𝐴}) = 1) | |
10 | 1nn0 12569 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
11 | 9, 10 | eqeltrdi 2852 | . . . . 5 ⊢ (𝐴 ∈ V → (♯‘{𝐴}) ∈ ℕ0) |
12 | snprc 4742 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
13 | fveq2 6920 | . . . . . . 7 ⊢ ({𝐴} = ∅ → (♯‘{𝐴}) = (♯‘∅)) | |
14 | 13, 6 | eqeltrdi 2852 | . . . . . 6 ⊢ ({𝐴} = ∅ → (♯‘{𝐴}) ∈ ℕ0) |
15 | 12, 14 | sylbi 217 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (♯‘{𝐴}) ∈ ℕ0) |
16 | 11, 15 | pm2.61i 182 | . . . 4 ⊢ (♯‘{𝐴}) ∈ ℕ0 |
17 | 8, 16 | eqeltrdi 2852 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) ∈ ℕ0) |
18 | 7, 17 | jaoi 856 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) ∈ ℕ0) |
19 | 1, 2, 18 | mp2b 10 | 1 ⊢ (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) ∈ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∅c0 4352 {csn 4648 ‘cfv 6573 0cc0 11184 1c1 11185 ℕ0cn0 12553 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |