MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsnif Structured version   Visualization version   GIF version

Theorem rabsnif 4723
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypothesis
Ref Expression
rabsnif.f (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rabsnif {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnif
StepHypRef Expression
1 rabsnifsb 4722 . . 3 {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
2 rabsnif.f . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 3828 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜓))
43ifbid 4549 . . 3 (𝐴 ∈ V → if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = if(𝜓, {𝐴}, ∅))
51, 4eqtrid 2789 . 2 (𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅))
6 rab0 4386 . . . 4 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
7 ifid 4566 . . . 4 if(𝜓, ∅, ∅) = ∅
86, 7eqtr4i 2768 . . 3 {𝑥 ∈ ∅ ∣ 𝜑} = if(𝜓, ∅, ∅)
9 snprc 4717 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 216 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
1110rabeqdv 3452 . . 3 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ ∅ ∣ 𝜑})
1210ifeq1d 4545 . . 3 𝐴 ∈ V → if(𝜓, {𝐴}, ∅) = if(𝜓, ∅, ∅))
138, 11, 123eqtr4a 2803 . 2 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅))
145, 13pm2.61i 182 1 {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  [wsbc 3788  c0 4333  ifcif 4525  {csn 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-nul 4334  df-if 4526  df-sn 4627
This theorem is referenced by:  suppsnop  8203  m1detdiag  22603  left1s  27933  right1s  27934  1loopgrvd2  29521  1hevtxdg1  29524  1egrvtxdg1  29527
  Copyright terms: Public domain W3C validator