MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsnif Structured version   Visualization version   GIF version

Theorem rabsnif 4619
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypothesis
Ref Expression
rabsnif.f (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rabsnif {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnif
StepHypRef Expression
1 rabsnifsb 4618 . . 3 {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
2 rabsnif.f . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 3758 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜓))
43ifbid 4447 . . 3 (𝐴 ∈ V → if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = if(𝜓, {𝐴}, ∅))
51, 4syl5eq 2845 . 2 (𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅))
6 rab0 4291 . . . 4 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
7 ifid 4464 . . . 4 if(𝜓, ∅, ∅) = ∅
86, 7eqtr4i 2824 . . 3 {𝑥 ∈ ∅ ∣ 𝜑} = if(𝜓, ∅, ∅)
9 snprc 4613 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 219 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
1110rabeqdv 3432 . . 3 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ ∅ ∣ 𝜑})
1210ifeq1d 4443 . . 3 𝐴 ∈ V → if(𝜓, {𝐴}, ∅) = if(𝜓, ∅, ∅))
138, 11, 123eqtr4a 2859 . 2 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅))
145, 13pm2.61i 185 1 {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  [wsbc 3720  c0 4243  ifcif 4425  {csn 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-nul 4244  df-if 4426  df-sn 4526
This theorem is referenced by:  suppsnop  7827  m1detdiag  21202  1loopgrvd2  27293  1hevtxdg1  27296  1egrvtxdg1  27299
  Copyright terms: Public domain W3C validator