MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsnif Structured version   Visualization version   GIF version

Theorem rabsnif 4675
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypothesis
Ref Expression
rabsnif.f (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rabsnif {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnif
StepHypRef Expression
1 rabsnifsb 4674 . . 3 {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
2 rabsnif.f . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 3777 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜓))
43ifbid 4498 . . 3 (𝐴 ∈ V → if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = if(𝜓, {𝐴}, ∅))
51, 4eqtrid 2780 . 2 (𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅))
6 rab0 4335 . . . 4 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
7 ifid 4515 . . . 4 if(𝜓, ∅, ∅) = ∅
86, 7eqtr4i 2759 . . 3 {𝑥 ∈ ∅ ∣ 𝜑} = if(𝜓, ∅, ∅)
9 snprc 4669 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 216 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
1110rabeqdv 3411 . . 3 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ ∅ ∣ 𝜑})
1210ifeq1d 4494 . . 3 𝐴 ∈ V → if(𝜓, {𝐴}, ∅) = if(𝜓, ∅, ∅))
138, 11, 123eqtr4a 2794 . 2 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅))
145, 13pm2.61i 182 1 {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  [wsbc 3737  c0 4282  ifcif 4474  {csn 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-nul 4283  df-if 4475  df-sn 4576
This theorem is referenced by:  suppsnop  8114  m1detdiag  22513  left1s  27841  right1s  27842  1loopgrvd2  29484  1hevtxdg1  29487  1egrvtxdg1  29490
  Copyright terms: Public domain W3C validator