![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabsnif | Structured version Visualization version GIF version |
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 21-Jul-2019.) |
Ref | Expression |
---|---|
rabsnif.f | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabsnif | ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsnifsb 4477 | . . 3 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) | |
2 | rabsnif.f | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3695 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 3 | ifbid 4330 | . . 3 ⊢ (𝐴 ∈ V → if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = if(𝜓, {𝐴}, ∅)) |
5 | 1, 4 | syl5eq 2873 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)) |
6 | rab0 4187 | . . . 4 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = ∅ | |
7 | ifid 4347 | . . . 4 ⊢ if(𝜓, ∅, ∅) = ∅ | |
8 | 6, 7 | eqtr4i 2852 | . . 3 ⊢ {𝑥 ∈ ∅ ∣ 𝜑} = if(𝜓, ∅, ∅) |
9 | snprc 4473 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
10 | 9 | biimpi 208 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
11 | 10 | rabeqdv 3407 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ ∅ ∣ 𝜑}) |
12 | 10 | ifeq1d 4326 | . . 3 ⊢ (¬ 𝐴 ∈ V → if(𝜓, {𝐴}, ∅) = if(𝜓, ∅, ∅)) |
13 | 8, 11, 12 | 3eqtr4a 2887 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)) |
14 | 5, 13 | pm2.61i 177 | 1 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1656 ∈ wcel 2164 {crab 3121 Vcvv 3414 [wsbc 3662 ∅c0 4146 ifcif 4308 {csn 4399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-nul 4147 df-if 4309 df-sn 4400 |
This theorem is referenced by: suppsnop 7578 m1detdiag 20778 1loopgrvd2 26808 1hevtxdg1 26811 1egrvtxdg1 26814 |
Copyright terms: Public domain | W3C validator |