MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsnif Structured version   Visualization version   GIF version

Theorem rabsnif 4729
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 21-Jul-2019.)
Hypothesis
Ref Expression
rabsnif.f (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rabsnif {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabsnif
StepHypRef Expression
1 rabsnifsb 4728 . . 3 {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
2 rabsnif.f . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 3814 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜓))
43ifbid 4553 . . 3 (𝐴 ∈ V → if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = if(𝜓, {𝐴}, ∅))
51, 4eqtrid 2777 . 2 (𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅))
6 rab0 4384 . . . 4 {𝑥 ∈ ∅ ∣ 𝜑} = ∅
7 ifid 4570 . . . 4 if(𝜓, ∅, ∅) = ∅
86, 7eqtr4i 2756 . . 3 {𝑥 ∈ ∅ ∣ 𝜑} = if(𝜓, ∅, ∅)
9 snprc 4723 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
109biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
1110rabeqdv 3434 . . 3 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ ∅ ∣ 𝜑})
1210ifeq1d 4549 . . 3 𝐴 ∈ V → if(𝜓, {𝐴}, ∅) = if(𝜓, ∅, ∅))
138, 11, 123eqtr4a 2791 . 2 𝐴 ∈ V → {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅))
145, 13pm2.61i 182 1 {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1533  wcel 2098  {crab 3418  Vcvv 3461  [wsbc 3773  c0 4322  ifcif 4530  {csn 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-nul 4323  df-if 4531  df-sn 4631
This theorem is referenced by:  suppsnop  8183  m1detdiag  22543  left1s  27867  right1s  27868  1loopgrvd2  29389  1hevtxdg1  29392  1egrvtxdg1  29395
  Copyright terms: Public domain W3C validator