Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppmptcfin Structured version   Visualization version   GIF version

Theorem suppmptcfin 47221
Description: The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
suppmptcfin.b 𝐵 = (Base‘𝑀)
suppmptcfin.r 𝑅 = (Scalar‘𝑀)
suppmptcfin.0 0 = (0g𝑅)
suppmptcfin.1 1 = (1r𝑅)
suppmptcfin.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
suppmptcfin ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥, 0
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem suppmptcfin
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 suppmptcfin.f . . . 4 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
2 eqeq1 2735 . . . . . 6 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
32ifbid 4551 . . . . 5 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
43cbvmptv 5261 . . . 4 (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) = (𝑣𝑉 ↦ if(𝑣 = 𝑋, 1 , 0 ))
51, 4eqtri 2759 . . 3 𝐹 = (𝑣𝑉 ↦ if(𝑣 = 𝑋, 1 , 0 ))
6 simp2 1136 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
7 suppmptcfin.0 . . . . 5 0 = (0g𝑅)
87fvexi 6905 . . . 4 0 ∈ V
98a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ V)
10 suppmptcfin.1 . . . . . 6 1 = (1r𝑅)
1110fvexi 6905 . . . . 5 1 ∈ V
1211a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 1 ∈ V)
138a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 0 ∈ V)
1412, 13ifcld 4574 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → if(𝑣 = 𝑋, 1 , 0 ) ∈ V)
155, 6, 9, 14mptsuppd 8177 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) = {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 })
16 snfi 9050 . . 3 {𝑋} ∈ Fin
17 2a1 28 . . . . . 6 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋)))
18 iffalse 4537 . . . . . . . . . 10 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
1918adantr 480 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
2019neeq1d 2999 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 000 ))
21 eqid 2731 . . . . . . . . 9 0 = 0
22 eqneqall 2950 . . . . . . . . 9 ( 0 = 0 → ( 00𝑣 = 𝑋))
2321, 22ax-mp 5 . . . . . . . 8 ( 00𝑣 = 𝑋)
2420, 23syl6bi 253 . . . . . . 7 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2524ex 412 . . . . . 6 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋)))
2617, 25pm2.61i 182 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2726ralrimiva 3145 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
28 rabsssn 4670 . . . 4 ({𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋} ↔ ∀𝑣𝑉 (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2927, 28sylibr 233 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋})
30 ssfi 9179 . . 3 (({𝑋} ∈ Fin ∧ {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋}) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ∈ Fin)
3116, 29, 30sylancr 586 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ∈ Fin)
3215, 31eqeltrd 2832 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  {crab 3431  Vcvv 3473  wss 3948  ifcif 4528  𝒫 cpw 4602  {csn 4628  cmpt 5231  cfv 6543  (class class class)co 7412   supp csupp 8151  Fincfn 8945  Basecbs 17151  Scalarcsca 17207  0gc0g 17392  1rcur 20082  LModclmod 20702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-supp 8152  df-1o 8472  df-en 8946  df-fin 8949
This theorem is referenced by:  mptcfsupp  47222
  Copyright terms: Public domain W3C validator