Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppmptcfin Structured version   Visualization version   GIF version

Theorem suppmptcfin 44256
 Description: The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
suppmptcfin.b 𝐵 = (Base‘𝑀)
suppmptcfin.r 𝑅 = (Scalar‘𝑀)
suppmptcfin.0 0 = (0g𝑅)
suppmptcfin.1 1 = (1r𝑅)
suppmptcfin.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
suppmptcfin ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥, 0
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem suppmptcfin
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 suppmptcfin.f . . . 4 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
2 eqeq1 2828 . . . . . 6 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
32ifbid 4491 . . . . 5 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
43cbvmptv 5165 . . . 4 (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) = (𝑣𝑉 ↦ if(𝑣 = 𝑋, 1 , 0 ))
51, 4eqtri 2848 . . 3 𝐹 = (𝑣𝑉 ↦ if(𝑣 = 𝑋, 1 , 0 ))
6 simp2 1131 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
7 suppmptcfin.0 . . . . 5 0 = (0g𝑅)
87fvexi 6680 . . . 4 0 ∈ V
98a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ V)
10 suppmptcfin.1 . . . . . 6 1 = (1r𝑅)
1110fvexi 6680 . . . . 5 1 ∈ V
1211a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 1 ∈ V)
138a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 0 ∈ V)
1412, 13ifcld 4514 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → if(𝑣 = 𝑋, 1 , 0 ) ∈ V)
155, 6, 9, 14mptsuppd 7847 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) = {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 })
16 snfi 8586 . . 3 {𝑋} ∈ Fin
17 2a1 28 . . . . . 6 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋)))
18 iffalse 4478 . . . . . . . . . 10 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
1918adantr 481 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
2019neeq1d 3079 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 000 ))
21 eqid 2824 . . . . . . . . 9 0 = 0
22 eqneqall 3031 . . . . . . . . 9 ( 0 = 0 → ( 00𝑣 = 𝑋))
2321, 22ax-mp 5 . . . . . . . 8 ( 00𝑣 = 𝑋)
2420, 23syl6bi 254 . . . . . . 7 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2524ex 413 . . . . . 6 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋)))
2617, 25pm2.61i 183 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2726ralrimiva 3186 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
28 rabsssn 4603 . . . 4 ({𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋} ↔ ∀𝑣𝑉 (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2927, 28sylibr 235 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋})
30 ssfi 8730 . . 3 (({𝑋} ∈ Fin ∧ {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋}) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ∈ Fin)
3116, 29, 30sylancr 587 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ∈ Fin)
3215, 31eqeltrd 2917 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2106   ≠ wne 3020  ∀wral 3142  {crab 3146  Vcvv 3499   ⊆ wss 3939  ifcif 4469  𝒫 cpw 4541  {csn 4563   ↦ cmpt 5142  ‘cfv 6351  (class class class)co 7151   supp csupp 7824  Fincfn 8501  Basecbs 16475  Scalarcsca 16560  0gc0g 16705  1rcur 19173  LModclmod 19556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-supp 7825  df-1o 8096  df-er 8282  df-en 8502  df-fin 8505 This theorem is referenced by:  mptcfsupp  44257
 Copyright terms: Public domain W3C validator