Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppmptcfin Structured version   Visualization version   GIF version

Theorem suppmptcfin 44781
Description: The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019.)
Hypotheses
Ref Expression
suppmptcfin.b 𝐵 = (Base‘𝑀)
suppmptcfin.r 𝑅 = (Scalar‘𝑀)
suppmptcfin.0 0 = (0g𝑅)
suppmptcfin.1 1 = (1r𝑅)
suppmptcfin.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
suppmptcfin ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥, 0
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem suppmptcfin
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 suppmptcfin.f . . . 4 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
2 eqeq1 2802 . . . . . 6 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
32ifbid 4447 . . . . 5 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
43cbvmptv 5133 . . . 4 (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) = (𝑣𝑉 ↦ if(𝑣 = 𝑋, 1 , 0 ))
51, 4eqtri 2821 . . 3 𝐹 = (𝑣𝑉 ↦ if(𝑣 = 𝑋, 1 , 0 ))
6 simp2 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
7 suppmptcfin.0 . . . . 5 0 = (0g𝑅)
87fvexi 6659 . . . 4 0 ∈ V
98a1i 11 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ V)
10 suppmptcfin.1 . . . . . 6 1 = (1r𝑅)
1110fvexi 6659 . . . . 5 1 ∈ V
1211a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 1 ∈ V)
138a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 0 ∈ V)
1412, 13ifcld 4470 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → if(𝑣 = 𝑋, 1 , 0 ) ∈ V)
155, 6, 9, 14mptsuppd 7836 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) = {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 })
16 snfi 8577 . . 3 {𝑋} ∈ Fin
17 2a1 28 . . . . . 6 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋)))
18 iffalse 4434 . . . . . . . . . 10 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
1918adantr 484 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
2019neeq1d 3046 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 000 ))
21 eqid 2798 . . . . . . . . 9 0 = 0
22 eqneqall 2998 . . . . . . . . 9 ( 0 = 0 → ( 00𝑣 = 𝑋))
2321, 22ax-mp 5 . . . . . . . 8 ( 00𝑣 = 𝑋)
2420, 23syl6bi 256 . . . . . . 7 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2524ex 416 . . . . . 6 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋)))
2617, 25pm2.61i 185 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2726ralrimiva 3149 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
28 rabsssn 4567 . . . 4 ({𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋} ↔ ∀𝑣𝑉 (if(𝑣 = 𝑋, 1 , 0 ) ≠ 0𝑣 = 𝑋))
2927, 28sylibr 237 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋})
30 ssfi 8722 . . 3 (({𝑋} ∈ Fin ∧ {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ⊆ {𝑋}) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ∈ Fin)
3116, 29, 30sylancr 590 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ if(𝑣 = 𝑋, 1 , 0 ) ≠ 0 } ∈ Fin)
3215, 31eqeltrd 2890 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 supp 0 ) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  {crab 3110  Vcvv 3441  wss 3881  ifcif 4425  𝒫 cpw 4497  {csn 4525  cmpt 5110  cfv 6324  (class class class)co 7135   supp csupp 7813  Fincfn 8492  Basecbs 16475  Scalarcsca 16560  0gc0g 16705  1rcur 19244  LModclmod 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-supp 7814  df-1o 8085  df-er 8272  df-en 8493  df-fin 8496
This theorem is referenced by:  mptcfsupp  44782
  Copyright terms: Public domain W3C validator