Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc1 Structured version   Visualization version   GIF version

Theorem linc1 47060
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
linc1.b 𝐡 = (Baseβ€˜π‘€)
linc1.s 𝑆 = (Scalarβ€˜π‘€)
linc1.0 0 = (0gβ€˜π‘†)
linc1.1 1 = (1rβ€˜π‘†)
linc1.f 𝐹 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑋, 1 , 0 ))
Assertion
Ref Expression
linc1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (𝐹( linC β€˜π‘€)𝑉) = 𝑋)
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑀   π‘₯,𝑉   π‘₯,𝑋   π‘₯, 0   π‘₯, 1
Allowed substitution hints:   𝑆(π‘₯)   𝐹(π‘₯)

Proof of Theorem linc1
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝑀 ∈ LMod)
2 linc1.s . . . . . . . . . 10 𝑆 = (Scalarβ€˜π‘€)
32lmodring 20472 . . . . . . . . 9 (𝑀 ∈ LMod β†’ 𝑆 ∈ Ring)
42eqcomi 2742 . . . . . . . . . . . 12 (Scalarβ€˜π‘€) = 𝑆
54fveq2i 6892 . . . . . . . . . . 11 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜π‘†)
6 linc1.1 . . . . . . . . . . 11 1 = (1rβ€˜π‘†)
75, 6ringidcl 20077 . . . . . . . . . 10 (𝑆 ∈ Ring β†’ 1 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
8 linc1.0 . . . . . . . . . . 11 0 = (0gβ€˜π‘†)
95, 8ring0cl 20078 . . . . . . . . . 10 (𝑆 ∈ Ring β†’ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
107, 9jca 513 . . . . . . . . 9 (𝑆 ∈ Ring β†’ ( 1 ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
113, 10syl 17 . . . . . . . 8 (𝑀 ∈ LMod β†’ ( 1 ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
12113ad2ant1 1134 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ ( 1 ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
1312adantr 482 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ π‘₯ ∈ 𝑉) β†’ ( 1 ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€))))
14 ifcl 4573 . . . . . 6 (( 1 ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 0 ∈ (Baseβ€˜(Scalarβ€˜π‘€))) β†’ if(π‘₯ = 𝑋, 1 , 0 ) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
1513, 14syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ π‘₯ ∈ 𝑉) β†’ if(π‘₯ = 𝑋, 1 , 0 ) ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
16 linc1.f . . . . 5 𝐹 = (π‘₯ ∈ 𝑉 ↦ if(π‘₯ = 𝑋, 1 , 0 ))
1715, 16fmptd 7111 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€)))
18 fvex 6902 . . . . 5 (Baseβ€˜(Scalarβ€˜π‘€)) ∈ V
19 simp2 1138 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝑉 ∈ 𝒫 𝐡)
20 elmapg 8830 . . . . 5 (((Baseβ€˜(Scalarβ€˜π‘€)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
2118, 19, 20sylancr 588 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ↔ 𝐹:π‘‰βŸΆ(Baseβ€˜(Scalarβ€˜π‘€))))
2217, 21mpbird 257 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉))
23 linc1.b . . . . . . 7 𝐡 = (Baseβ€˜π‘€)
2423pweqi 4618 . . . . . 6 𝒫 𝐡 = 𝒫 (Baseβ€˜π‘€)
2524eleq2i 2826 . . . . 5 (𝑉 ∈ 𝒫 𝐡 ↔ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
2625biimpi 215 . . . 4 (𝑉 ∈ 𝒫 𝐡 β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
27263ad2ant2 1135 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
28 lincval 47044 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Baseβ€˜(Scalarβ€˜π‘€)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐹( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦))))
291, 22, 27, 28syl3anc 1372 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (𝐹( linC β€˜π‘€)𝑉) = (𝑀 Ξ£g (𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦))))
30 eqid 2733 . . 3 (0gβ€˜π‘€) = (0gβ€˜π‘€)
31 lmodgrp 20471 . . . . 5 (𝑀 ∈ LMod β†’ 𝑀 ∈ Grp)
3231grpmndd 18829 . . . 4 (𝑀 ∈ LMod β†’ 𝑀 ∈ Mnd)
33323ad2ant1 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝑀 ∈ Mnd)
34 simp3 1139 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ 𝑉)
351adantr 482 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ 𝑀 ∈ LMod)
36 eqeq1 2737 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (π‘₯ = 𝑋 ↔ 𝑦 = 𝑋))
3736ifbid 4551 . . . . . . 7 (π‘₯ = 𝑦 β†’ if(π‘₯ = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 ))
38 simpr 486 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ 𝑦 ∈ 𝑉)
39 eqid 2733 . . . . . . . . . . 11 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
402, 39, 6lmod1cl 20492 . . . . . . . . . 10 (𝑀 ∈ LMod β†’ 1 ∈ (Baseβ€˜π‘†))
41403ad2ant1 1134 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 1 ∈ (Baseβ€˜π‘†))
4241adantr 482 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ 1 ∈ (Baseβ€˜π‘†))
432, 39, 8lmod0cl 20491 . . . . . . . . . 10 (𝑀 ∈ LMod β†’ 0 ∈ (Baseβ€˜π‘†))
44433ad2ant1 1134 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 0 ∈ (Baseβ€˜π‘†))
4544adantr 482 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ 0 ∈ (Baseβ€˜π‘†))
4642, 45ifcld 4574 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ if(𝑦 = 𝑋, 1 , 0 ) ∈ (Baseβ€˜π‘†))
4716, 37, 38, 46fvmptd3 7019 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ (πΉβ€˜π‘¦) = if(𝑦 = 𝑋, 1 , 0 ))
4847, 46eqeltrd 2834 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ (πΉβ€˜π‘¦) ∈ (Baseβ€˜π‘†))
49 elelpwi 4612 . . . . . . . 8 ((𝑦 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 𝑦 ∈ 𝐡)
5049expcom 415 . . . . . . 7 (𝑉 ∈ 𝒫 𝐡 β†’ (𝑦 ∈ 𝑉 β†’ 𝑦 ∈ 𝐡))
51503ad2ant2 1135 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (𝑦 ∈ 𝑉 β†’ 𝑦 ∈ 𝐡))
5251imp 408 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ 𝑦 ∈ 𝐡)
53 eqid 2733 . . . . . 6 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
5423, 2, 53, 39lmodvscl 20482 . . . . 5 ((𝑀 ∈ LMod ∧ (πΉβ€˜π‘¦) ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ 𝐡) β†’ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦) ∈ 𝐡)
5535, 48, 52, 54syl3anc 1372 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) β†’ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦) ∈ 𝐡)
56 eqid 2733 . . . 4 (𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦)) = (𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦))
5755, 56fmptd 7111 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦)):π‘‰βŸΆπ΅)
58 fveq2 6889 . . . . . . 7 (𝑦 = 𝑣 β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π‘£))
59 id 22 . . . . . . 7 (𝑦 = 𝑣 β†’ 𝑦 = 𝑣)
6058, 59oveq12d 7424 . . . . . 6 (𝑦 = 𝑣 β†’ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦) = ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))
6160cbvmptv 5261 . . . . 5 (𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦)) = (𝑣 ∈ 𝑉 ↦ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣))
62 fvexd 6904 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (0gβ€˜π‘€) ∈ V)
63 ovexd 7441 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) β†’ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) ∈ V)
6461, 19, 62, 63mptsuppd 8169 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ ((𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦)) supp (0gβ€˜π‘€)) = {𝑣 ∈ 𝑉 ∣ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€)})
65 2a1 28 . . . . . . 7 (𝑣 = 𝑋 β†’ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) β†’ (((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€) β†’ 𝑣 = 𝑋)))
66 simprr 772 . . . . . . . . . . . . . 14 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ 𝑣 ∈ 𝑉)
676fvexi 6903 . . . . . . . . . . . . . . 15 1 ∈ V
688fvexi 6903 . . . . . . . . . . . . . . 15 0 ∈ V
6967, 68ifex 4578 . . . . . . . . . . . . . 14 if(𝑣 = 𝑋, 1 , 0 ) ∈ V
70 eqeq1 2737 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝑣 β†’ (π‘₯ = 𝑋 ↔ 𝑣 = 𝑋))
7170ifbid 4551 . . . . . . . . . . . . . . 15 (π‘₯ = 𝑣 β†’ if(π‘₯ = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
7271, 16fvmptg 6994 . . . . . . . . . . . . . 14 ((𝑣 ∈ 𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) β†’ (πΉβ€˜π‘£) = if(𝑣 = 𝑋, 1 , 0 ))
7366, 69, 72sylancl 587 . . . . . . . . . . . . 13 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ (πΉβ€˜π‘£) = if(𝑣 = 𝑋, 1 , 0 ))
74 iffalse 4537 . . . . . . . . . . . . . 14 (Β¬ 𝑣 = 𝑋 β†’ if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7574adantr 482 . . . . . . . . . . . . 13 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7673, 75eqtrd 2773 . . . . . . . . . . . 12 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ (πΉβ€˜π‘£) = 0 )
7776oveq1d 7421 . . . . . . . . . . 11 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) = ( 0 ( ·𝑠 β€˜π‘€)𝑣))
781adantr 482 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) β†’ 𝑀 ∈ LMod)
7978adantl 483 . . . . . . . . . . . 12 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ 𝑀 ∈ LMod)
80 elelpwi 4612 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 𝑣 ∈ 𝐡)
8180expcom 415 . . . . . . . . . . . . . . 15 (𝑉 ∈ 𝒫 𝐡 β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ 𝐡))
82813ad2ant2 1135 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (𝑣 ∈ 𝑉 β†’ 𝑣 ∈ 𝐡))
8382imp 408 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) β†’ 𝑣 ∈ 𝐡)
8483adantl 483 . . . . . . . . . . . 12 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ 𝑣 ∈ 𝐡)
8523, 2, 53, 8, 30lmod0vs 20498 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐡) β†’ ( 0 ( ·𝑠 β€˜π‘€)𝑣) = (0gβ€˜π‘€))
8679, 84, 85syl2anc 585 . . . . . . . . . . 11 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ ( 0 ( ·𝑠 β€˜π‘€)𝑣) = (0gβ€˜π‘€))
8777, 86eqtrd 2773 . . . . . . . . . 10 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) = (0gβ€˜π‘€))
8887neeq1d 3001 . . . . . . . . 9 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ (((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€) ↔ (0gβ€˜π‘€) β‰  (0gβ€˜π‘€)))
89 eqneqall 2952 . . . . . . . . . 10 ((0gβ€˜π‘€) = (0gβ€˜π‘€) β†’ ((0gβ€˜π‘€) β‰  (0gβ€˜π‘€) β†’ 𝑣 = 𝑋))
9030, 89ax-mp 5 . . . . . . . . 9 ((0gβ€˜π‘€) β‰  (0gβ€˜π‘€) β†’ 𝑣 = 𝑋)
9188, 90syl6bi 253 . . . . . . . 8 ((Β¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) β†’ (((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€) β†’ 𝑣 = 𝑋))
9291ex 414 . . . . . . 7 (Β¬ 𝑣 = 𝑋 β†’ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) β†’ (((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€) β†’ 𝑣 = 𝑋)))
9365, 92pm2.61i 182 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) β†’ (((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€) β†’ 𝑣 = 𝑋))
9493ralrimiva 3147 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ βˆ€π‘£ ∈ 𝑉 (((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€) β†’ 𝑣 = 𝑋))
95 rabsssn 4670 . . . . 5 ({𝑣 ∈ 𝑉 ∣ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€)} βŠ† {𝑋} ↔ βˆ€π‘£ ∈ 𝑉 (((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€) β†’ 𝑣 = 𝑋))
9694, 95sylibr 233 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ {𝑣 ∈ 𝑉 ∣ ((πΉβ€˜π‘£)( ·𝑠 β€˜π‘€)𝑣) β‰  (0gβ€˜π‘€)} βŠ† {𝑋})
9764, 96eqsstrd 4020 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ ((𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦)) supp (0gβ€˜π‘€)) βŠ† {𝑋})
9823, 30, 33, 19, 34, 57, 97gsumpt 19825 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (𝑀 Ξ£g (𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦))) = ((𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦))β€˜π‘‹))
99 ovex 7439 . . . 4 ((πΉβ€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) ∈ V
100 fveq2 6889 . . . . . 6 (𝑦 = 𝑋 β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π‘‹))
101 id 22 . . . . . 6 (𝑦 = 𝑋 β†’ 𝑦 = 𝑋)
102100, 101oveq12d 7424 . . . . 5 (𝑦 = 𝑋 β†’ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦) = ((πΉβ€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋))
103102, 56fvmptg 6994 . . . 4 ((𝑋 ∈ 𝑉 ∧ ((πΉβ€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) ∈ V) β†’ ((𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦))β€˜π‘‹) = ((πΉβ€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋))
10434, 99, 103sylancl 587 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ ((𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦))β€˜π‘‹) = ((πΉβ€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋))
105 iftrue 4534 . . . . . 6 (π‘₯ = 𝑋 β†’ if(π‘₯ = 𝑋, 1 , 0 ) = 1 )
106105, 16fvmptg 6994 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 1 ∈ V) β†’ (πΉβ€˜π‘‹) = 1 )
10734, 67, 106sylancl 587 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (πΉβ€˜π‘‹) = 1 )
108107oveq1d 7421 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ ((πΉβ€˜π‘‹)( ·𝑠 β€˜π‘€)𝑋) = ( 1 ( ·𝑠 β€˜π‘€)𝑋))
109 elelpwi 4612 . . . . . 6 ((𝑋 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐡) β†’ 𝑋 ∈ 𝐡)
110109ancoms 460 . . . . 5 ((𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ 𝐡)
1111103adant1 1131 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ 𝐡)
11223, 2, 53, 6lmodvs1 20493 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐡) β†’ ( 1 ( ·𝑠 β€˜π‘€)𝑋) = 𝑋)
1131, 111, 112syl2anc 585 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ ( 1 ( ·𝑠 β€˜π‘€)𝑋) = 𝑋)
114104, 108, 1133eqtrd 2777 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ ((𝑦 ∈ 𝑉 ↦ ((πΉβ€˜π‘¦)( ·𝑠 β€˜π‘€)𝑦))β€˜π‘‹) = 𝑋)
11529, 98, 1143eqtrd 2777 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐡 ∧ 𝑋 ∈ 𝑉) β†’ (𝐹( linC β€˜π‘€)𝑉) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  {crab 3433  Vcvv 3475   βŠ† wss 3948  ifcif 4528  π’« cpw 4602  {csn 4628   ↦ cmpt 5231  βŸΆwf 6537  β€˜cfv 6541  (class class class)co 7406   supp csupp 8143   ↑m cmap 8817  Basecbs 17141  Scalarcsca 17197   ·𝑠 cvsca 17198  0gc0g 17382   Ξ£g cgsu 17383  Mndcmnd 18622  1rcur 19999  Ringcrg 20050  LModclmod 20464   linC clinc 47039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-supp 8144  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-oi 9502  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-0g 17384  df-gsum 17385  df-mre 17527  df-mrc 17528  df-acs 17530  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-submnd 18669  df-grp 18819  df-mulg 18946  df-cntz 19176  df-cmn 19645  df-mgp 19983  df-ur 20000  df-ring 20052  df-lmod 20466  df-linc 47041
This theorem is referenced by:  lcoss  47071
  Copyright terms: Public domain W3C validator