Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc1 Structured version   Visualization version   GIF version

Theorem linc1 48414
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
linc1.b 𝐵 = (Base‘𝑀)
linc1.s 𝑆 = (Scalar‘𝑀)
linc1.0 0 = (0g𝑆)
linc1.1 1 = (1r𝑆)
linc1.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
linc1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc1
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ LMod)
2 linc1.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
32lmodring 20771 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2738 . . . . . . . . . . . 12 (Scalar‘𝑀) = 𝑆
54fveq2i 6825 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc1.1 . . . . . . . . . . 11 1 = (1r𝑆)
75, 6ringidcl 20150 . . . . . . . . . 10 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc1.0 . . . . . . . . . . 11 0 = (0g𝑆)
95, 8ring0cl 20152 . . . . . . . . . 10 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 511 . . . . . . . . 9 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . . 8 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
12113ad2ant1 1133 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1312adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
14 ifcl 4522 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1513, 14syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
16 linc1.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
1715, 16fmptd 7048 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
18 fvex 6835 . . . . 5 (Base‘(Scalar‘𝑀)) ∈ V
19 simp2 1137 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
20 elmapg 8766 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2118, 19, 20sylancr 587 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2217, 21mpbird 257 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
23 linc1.b . . . . . . 7 𝐵 = (Base‘𝑀)
2423pweqi 4567 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2524eleq2i 2820 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625biimpi 216 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
27263ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
28 lincval 48398 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
291, 22, 27, 28syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
30 eqid 2729 . . 3 (0g𝑀) = (0g𝑀)
31 lmodgrp 20770 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
3231grpmndd 18825 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
33323ad2ant1 1133 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ Mnd)
34 simp3 1138 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝑉)
351adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑀 ∈ LMod)
36 eqeq1 2733 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝑋𝑦 = 𝑋))
3736ifbid 4500 . . . . . . 7 (𝑥 = 𝑦 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 ))
38 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝑉)
39 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
402, 39, 6lmod1cl 20792 . . . . . . . . . 10 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
41403ad2ant1 1133 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 1 ∈ (Base‘𝑆))
4241adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 1 ∈ (Base‘𝑆))
432, 39, 8lmod0cl 20791 . . . . . . . . . 10 (𝑀 ∈ LMod → 0 ∈ (Base‘𝑆))
44433ad2ant1 1133 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ (Base‘𝑆))
4544adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 0 ∈ (Base‘𝑆))
4642, 45ifcld 4523 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆))
4716, 37, 38, 46fvmptd3 6953 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) = if(𝑦 = 𝑋, 1 , 0 ))
4847, 46eqeltrd 2828 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) ∈ (Base‘𝑆))
49 elelpwi 4561 . . . . . . . 8 ((𝑦𝑉𝑉 ∈ 𝒫 𝐵) → 𝑦𝐵)
5049expcom 413 . . . . . . 7 (𝑉 ∈ 𝒫 𝐵 → (𝑦𝑉𝑦𝐵))
51503ad2ant2 1134 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉𝑦𝐵))
5251imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝐵)
53 eqid 2729 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5423, 2, 53, 39lmodvscl 20781 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑦) ∈ (Base‘𝑆) ∧ 𝑦𝐵) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
5535, 48, 52, 54syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
56 eqid 2729 . . . 4 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))
5755, 56fmptd 7048 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)):𝑉𝐵)
58 fveq2 6822 . . . . . . 7 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
59 id 22 . . . . . . 7 (𝑦 = 𝑣𝑦 = 𝑣)
6058, 59oveq12d 7367 . . . . . 6 (𝑦 = 𝑣 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑣)( ·𝑠𝑀)𝑣))
6160cbvmptv 5196 . . . . 5 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))
62 fvexd 6837 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (0g𝑀) ∈ V)
63 ovexd 7384 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ V)
6461, 19, 62, 63mptsuppd 8120 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) = {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)})
65 2a1 28 . . . . . . 7 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
66 simprr 772 . . . . . . . . . . . . . 14 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝑉)
676fvexi 6836 . . . . . . . . . . . . . . 15 1 ∈ V
688fvexi 6836 . . . . . . . . . . . . . . 15 0 ∈ V
6967, 68ifex 4527 . . . . . . . . . . . . . 14 if(𝑣 = 𝑋, 1 , 0 ) ∈ V
70 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
7170ifbid 4500 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
7271, 16fvmptg 6928 . . . . . . . . . . . . . 14 ((𝑣𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
7366, 69, 72sylancl 586 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
74 iffalse 4485 . . . . . . . . . . . . . 14 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7574adantr 480 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7673, 75eqtrd 2764 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = 0 )
7776oveq1d 7364 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ( 0 ( ·𝑠𝑀)𝑣))
781adantr 480 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
7978adantl 481 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑀 ∈ LMod)
80 elelpwi 4561 . . . . . . . . . . . . . . . 16 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
8180expcom 413 . . . . . . . . . . . . . . 15 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
82813ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑣𝑉𝑣𝐵))
8382imp 406 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑣𝐵)
8483adantl 481 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝐵)
8523, 2, 53, 8, 30lmod0vs 20798 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
8679, 84, 85syl2anc 584 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
8777, 86eqtrd 2764 . . . . . . . . . 10 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (0g𝑀))
8887neeq1d 2984 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
89 eqneqall 2936 . . . . . . . . . 10 ((0g𝑀) = (0g𝑀) → ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋))
9030, 89ax-mp 5 . . . . . . . . 9 ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋)
9188, 90biimtrdi 253 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9291ex 412 . . . . . . 7 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
9365, 92pm2.61i 182 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9493ralrimiva 3121 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
95 rabsssn 4620 . . . . 5 ({𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋} ↔ ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9694, 95sylibr 234 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋})
9764, 96eqsstrd 3970 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) ⊆ {𝑋})
9823, 30, 33, 19, 34, 57, 97gsumpt 19841 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))) = ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋))
99 ovex 7382 . . . 4 ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V
100 fveq2 6822 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
101 id 22 . . . . . 6 (𝑦 = 𝑋𝑦 = 𝑋)
102100, 101oveq12d 7367 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
103102, 56fvmptg 6928 . . . 4 ((𝑋𝑉 ∧ ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
10434, 99, 103sylancl 586 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
105 iftrue 4482 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑋, 1 , 0 ) = 1 )
106105, 16fvmptg 6928 . . . . 5 ((𝑋𝑉1 ∈ V) → (𝐹𝑋) = 1 )
10734, 67, 106sylancl 586 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) = 1 )
108107oveq1d 7364 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) = ( 1 ( ·𝑠𝑀)𝑋))
109 elelpwi 4561 . . . . . 6 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
110109ancoms 458 . . . . 5 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
1111103adant1 1130 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
11223, 2, 53, 6lmodvs1 20793 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
1131, 111, 112syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
114104, 108, 1133eqtrd 2768 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = 𝑋)
11529, 98, 1143eqtrd 2768 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3394  Vcvv 3436  wss 3903  ifcif 4476  𝒫 cpw 4551  {csn 4577  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349   supp csupp 8093  m cmap 8753  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  1rcur 20066  Ringcrg 20118  LModclmod 20763   linC clinc 48393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-linc 48395
This theorem is referenced by:  lcoss  48425
  Copyright terms: Public domain W3C validator