Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc1 Structured version   Visualization version   GIF version

Theorem linc1 48387
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
linc1.b 𝐵 = (Base‘𝑀)
linc1.s 𝑆 = (Scalar‘𝑀)
linc1.0 0 = (0g𝑆)
linc1.1 1 = (1r𝑆)
linc1.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
linc1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc1
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ LMod)
2 linc1.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
32lmodring 20750 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2738 . . . . . . . . . . . 12 (Scalar‘𝑀) = 𝑆
54fveq2i 6843 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc1.1 . . . . . . . . . . 11 1 = (1r𝑆)
75, 6ringidcl 20150 . . . . . . . . . 10 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc1.0 . . . . . . . . . . 11 0 = (0g𝑆)
95, 8ring0cl 20152 . . . . . . . . . 10 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 511 . . . . . . . . 9 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . . 8 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
12113ad2ant1 1133 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1312adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
14 ifcl 4530 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1513, 14syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
16 linc1.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
1715, 16fmptd 7068 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
18 fvex 6853 . . . . 5 (Base‘(Scalar‘𝑀)) ∈ V
19 simp2 1137 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
20 elmapg 8789 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2118, 19, 20sylancr 587 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2217, 21mpbird 257 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
23 linc1.b . . . . . . 7 𝐵 = (Base‘𝑀)
2423pweqi 4575 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2524eleq2i 2820 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625biimpi 216 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
27263ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
28 lincval 48371 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
291, 22, 27, 28syl3anc 1373 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
30 eqid 2729 . . 3 (0g𝑀) = (0g𝑀)
31 lmodgrp 20749 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
3231grpmndd 18854 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
33323ad2ant1 1133 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ Mnd)
34 simp3 1138 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝑉)
351adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑀 ∈ LMod)
36 eqeq1 2733 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝑋𝑦 = 𝑋))
3736ifbid 4508 . . . . . . 7 (𝑥 = 𝑦 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 ))
38 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝑉)
39 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
402, 39, 6lmod1cl 20771 . . . . . . . . . 10 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
41403ad2ant1 1133 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 1 ∈ (Base‘𝑆))
4241adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 1 ∈ (Base‘𝑆))
432, 39, 8lmod0cl 20770 . . . . . . . . . 10 (𝑀 ∈ LMod → 0 ∈ (Base‘𝑆))
44433ad2ant1 1133 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ (Base‘𝑆))
4544adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 0 ∈ (Base‘𝑆))
4642, 45ifcld 4531 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆))
4716, 37, 38, 46fvmptd3 6973 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) = if(𝑦 = 𝑋, 1 , 0 ))
4847, 46eqeltrd 2828 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) ∈ (Base‘𝑆))
49 elelpwi 4569 . . . . . . . 8 ((𝑦𝑉𝑉 ∈ 𝒫 𝐵) → 𝑦𝐵)
5049expcom 413 . . . . . . 7 (𝑉 ∈ 𝒫 𝐵 → (𝑦𝑉𝑦𝐵))
51503ad2ant2 1134 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉𝑦𝐵))
5251imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝐵)
53 eqid 2729 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5423, 2, 53, 39lmodvscl 20760 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑦) ∈ (Base‘𝑆) ∧ 𝑦𝐵) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
5535, 48, 52, 54syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
56 eqid 2729 . . . 4 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))
5755, 56fmptd 7068 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)):𝑉𝐵)
58 fveq2 6840 . . . . . . 7 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
59 id 22 . . . . . . 7 (𝑦 = 𝑣𝑦 = 𝑣)
6058, 59oveq12d 7387 . . . . . 6 (𝑦 = 𝑣 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑣)( ·𝑠𝑀)𝑣))
6160cbvmptv 5206 . . . . 5 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))
62 fvexd 6855 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (0g𝑀) ∈ V)
63 ovexd 7404 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ V)
6461, 19, 62, 63mptsuppd 8143 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) = {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)})
65 2a1 28 . . . . . . 7 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
66 simprr 772 . . . . . . . . . . . . . 14 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝑉)
676fvexi 6854 . . . . . . . . . . . . . . 15 1 ∈ V
688fvexi 6854 . . . . . . . . . . . . . . 15 0 ∈ V
6967, 68ifex 4535 . . . . . . . . . . . . . 14 if(𝑣 = 𝑋, 1 , 0 ) ∈ V
70 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
7170ifbid 4508 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
7271, 16fvmptg 6948 . . . . . . . . . . . . . 14 ((𝑣𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
7366, 69, 72sylancl 586 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
74 iffalse 4493 . . . . . . . . . . . . . 14 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7574adantr 480 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7673, 75eqtrd 2764 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = 0 )
7776oveq1d 7384 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ( 0 ( ·𝑠𝑀)𝑣))
781adantr 480 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
7978adantl 481 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑀 ∈ LMod)
80 elelpwi 4569 . . . . . . . . . . . . . . . 16 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
8180expcom 413 . . . . . . . . . . . . . . 15 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
82813ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑣𝑉𝑣𝐵))
8382imp 406 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑣𝐵)
8483adantl 481 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝐵)
8523, 2, 53, 8, 30lmod0vs 20777 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
8679, 84, 85syl2anc 584 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
8777, 86eqtrd 2764 . . . . . . . . . 10 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (0g𝑀))
8887neeq1d 2984 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
89 eqneqall 2936 . . . . . . . . . 10 ((0g𝑀) = (0g𝑀) → ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋))
9030, 89ax-mp 5 . . . . . . . . 9 ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋)
9188, 90biimtrdi 253 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9291ex 412 . . . . . . 7 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
9365, 92pm2.61i 182 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9493ralrimiva 3125 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
95 rabsssn 4628 . . . . 5 ({𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋} ↔ ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9694, 95sylibr 234 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋})
9764, 96eqsstrd 3978 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) ⊆ {𝑋})
9823, 30, 33, 19, 34, 57, 97gsumpt 19868 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))) = ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋))
99 ovex 7402 . . . 4 ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V
100 fveq2 6840 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
101 id 22 . . . . . 6 (𝑦 = 𝑋𝑦 = 𝑋)
102100, 101oveq12d 7387 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
103102, 56fvmptg 6948 . . . 4 ((𝑋𝑉 ∧ ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
10434, 99, 103sylancl 586 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
105 iftrue 4490 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑋, 1 , 0 ) = 1 )
106105, 16fvmptg 6948 . . . . 5 ((𝑋𝑉1 ∈ V) → (𝐹𝑋) = 1 )
10734, 67, 106sylancl 586 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) = 1 )
108107oveq1d 7384 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) = ( 1 ( ·𝑠𝑀)𝑋))
109 elelpwi 4569 . . . . . 6 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
110109ancoms 458 . . . . 5 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
1111103adant1 1130 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
11223, 2, 53, 6lmodvs1 20772 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
1131, 111, 112syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
114104, 108, 1133eqtrd 2768 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = 𝑋)
11529, 98, 1143eqtrd 2768 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  Vcvv 3444  wss 3911  ifcif 4484  𝒫 cpw 4559  {csn 4585  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369   supp csupp 8116  m cmap 8776  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  1rcur 20066  Ringcrg 20118  LModclmod 20742   linC clinc 48366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20744  df-linc 48368
This theorem is referenced by:  lcoss  48398
  Copyright terms: Public domain W3C validator