Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc1 Structured version   Visualization version   GIF version

Theorem linc1 46496
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
linc1.b 𝐵 = (Base‘𝑀)
linc1.s 𝑆 = (Scalar‘𝑀)
linc1.0 0 = (0g𝑆)
linc1.1 1 = (1r𝑆)
linc1.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
linc1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc1
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ LMod)
2 linc1.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
32lmodring 20330 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2745 . . . . . . . . . . . 12 (Scalar‘𝑀) = 𝑆
54fveq2i 6845 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc1.1 . . . . . . . . . . 11 1 = (1r𝑆)
75, 6ringidcl 19989 . . . . . . . . . 10 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc1.0 . . . . . . . . . . 11 0 = (0g𝑆)
95, 8ring0cl 19990 . . . . . . . . . 10 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 512 . . . . . . . . 9 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . . 8 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
12113ad2ant1 1133 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1312adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
14 ifcl 4531 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1513, 14syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
16 linc1.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
1715, 16fmptd 7062 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
18 fvex 6855 . . . . 5 (Base‘(Scalar‘𝑀)) ∈ V
19 simp2 1137 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
20 elmapg 8778 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2118, 19, 20sylancr 587 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2217, 21mpbird 256 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
23 linc1.b . . . . . . 7 𝐵 = (Base‘𝑀)
2423pweqi 4576 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2524eleq2i 2829 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625biimpi 215 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
27263ad2ant2 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
28 lincval 46480 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
291, 22, 27, 28syl3anc 1371 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
30 eqid 2736 . . 3 (0g𝑀) = (0g𝑀)
31 lmodgrp 20329 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
3231grpmndd 18760 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
33323ad2ant1 1133 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ Mnd)
34 simp3 1138 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝑉)
351adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑀 ∈ LMod)
36 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝑋𝑦 = 𝑋))
3736ifbid 4509 . . . . . . 7 (𝑥 = 𝑦 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 ))
38 simpr 485 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝑉)
39 eqid 2736 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
402, 39, 6lmod1cl 20349 . . . . . . . . . 10 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
41403ad2ant1 1133 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 1 ∈ (Base‘𝑆))
4241adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 1 ∈ (Base‘𝑆))
432, 39, 8lmod0cl 20348 . . . . . . . . . 10 (𝑀 ∈ LMod → 0 ∈ (Base‘𝑆))
44433ad2ant1 1133 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ (Base‘𝑆))
4544adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 0 ∈ (Base‘𝑆))
4642, 45ifcld 4532 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆))
4716, 37, 38, 46fvmptd3 6971 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) = if(𝑦 = 𝑋, 1 , 0 ))
4847, 46eqeltrd 2838 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) ∈ (Base‘𝑆))
49 elelpwi 4570 . . . . . . . 8 ((𝑦𝑉𝑉 ∈ 𝒫 𝐵) → 𝑦𝐵)
5049expcom 414 . . . . . . 7 (𝑉 ∈ 𝒫 𝐵 → (𝑦𝑉𝑦𝐵))
51503ad2ant2 1134 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉𝑦𝐵))
5251imp 407 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝐵)
53 eqid 2736 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5423, 2, 53, 39lmodvscl 20339 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑦) ∈ (Base‘𝑆) ∧ 𝑦𝐵) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
5535, 48, 52, 54syl3anc 1371 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
56 eqid 2736 . . . 4 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))
5755, 56fmptd 7062 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)):𝑉𝐵)
58 fveq2 6842 . . . . . . 7 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
59 id 22 . . . . . . 7 (𝑦 = 𝑣𝑦 = 𝑣)
6058, 59oveq12d 7375 . . . . . 6 (𝑦 = 𝑣 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑣)( ·𝑠𝑀)𝑣))
6160cbvmptv 5218 . . . . 5 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))
62 fvexd 6857 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (0g𝑀) ∈ V)
63 ovexd 7392 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ V)
6461, 19, 62, 63mptsuppd 8118 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) = {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)})
65 2a1 28 . . . . . . 7 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
66 simprr 771 . . . . . . . . . . . . . 14 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝑉)
676fvexi 6856 . . . . . . . . . . . . . . 15 1 ∈ V
688fvexi 6856 . . . . . . . . . . . . . . 15 0 ∈ V
6967, 68ifex 4536 . . . . . . . . . . . . . 14 if(𝑣 = 𝑋, 1 , 0 ) ∈ V
70 eqeq1 2740 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
7170ifbid 4509 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
7271, 16fvmptg 6946 . . . . . . . . . . . . . 14 ((𝑣𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
7366, 69, 72sylancl 586 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
74 iffalse 4495 . . . . . . . . . . . . . 14 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7574adantr 481 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7673, 75eqtrd 2776 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = 0 )
7776oveq1d 7372 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ( 0 ( ·𝑠𝑀)𝑣))
781adantr 481 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
7978adantl 482 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑀 ∈ LMod)
80 elelpwi 4570 . . . . . . . . . . . . . . . 16 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
8180expcom 414 . . . . . . . . . . . . . . 15 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
82813ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑣𝑉𝑣𝐵))
8382imp 407 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑣𝐵)
8483adantl 482 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝐵)
8523, 2, 53, 8, 30lmod0vs 20355 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
8679, 84, 85syl2anc 584 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
8777, 86eqtrd 2776 . . . . . . . . . 10 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (0g𝑀))
8887neeq1d 3003 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
89 eqneqall 2954 . . . . . . . . . 10 ((0g𝑀) = (0g𝑀) → ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋))
9030, 89ax-mp 5 . . . . . . . . 9 ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋)
9188, 90syl6bi 252 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9291ex 413 . . . . . . 7 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
9365, 92pm2.61i 182 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9493ralrimiva 3143 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
95 rabsssn 4628 . . . . 5 ({𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋} ↔ ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9694, 95sylibr 233 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋})
9764, 96eqsstrd 3982 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) ⊆ {𝑋})
9823, 30, 33, 19, 34, 57, 97gsumpt 19739 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))) = ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋))
99 ovex 7390 . . . 4 ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V
100 fveq2 6842 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
101 id 22 . . . . . 6 (𝑦 = 𝑋𝑦 = 𝑋)
102100, 101oveq12d 7375 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
103102, 56fvmptg 6946 . . . 4 ((𝑋𝑉 ∧ ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
10434, 99, 103sylancl 586 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
105 iftrue 4492 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑋, 1 , 0 ) = 1 )
106105, 16fvmptg 6946 . . . . 5 ((𝑋𝑉1 ∈ V) → (𝐹𝑋) = 1 )
10734, 67, 106sylancl 586 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) = 1 )
108107oveq1d 7372 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) = ( 1 ( ·𝑠𝑀)𝑋))
109 elelpwi 4570 . . . . . 6 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
110109ancoms 459 . . . . 5 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
1111103adant1 1130 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
11223, 2, 53, 6lmodvs1 20350 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
1131, 111, 112syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
114104, 108, 1133eqtrd 2780 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = 𝑋)
11529, 98, 1143eqtrd 2780 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  Vcvv 3445  wss 3910  ifcif 4486  𝒫 cpw 4560  {csn 4586  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357   supp csupp 8092  m cmap 8765  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  1rcur 19913  Ringcrg 19964  LModclmod 20322   linC clinc 46475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-linc 46477
This theorem is referenced by:  lcoss  46507
  Copyright terms: Public domain W3C validator