Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑀 ∈ LMod) |
2 | | linc1.s |
. . . . . . . . . 10
⊢ 𝑆 = (Scalar‘𝑀) |
3 | 2 | lmodring 20131 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod → 𝑆 ∈ Ring) |
4 | 2 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑀) =
𝑆 |
5 | 4 | fveq2i 6777 |
. . . . . . . . . . 11
⊢
(Base‘(Scalar‘𝑀)) = (Base‘𝑆) |
6 | | linc1.1 |
. . . . . . . . . . 11
⊢ 1 =
(1r‘𝑆) |
7 | 5, 6 | ringidcl 19807 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Ring → 1 ∈
(Base‘(Scalar‘𝑀))) |
8 | | linc1.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑆) |
9 | 5, 8 | ring0cl 19808 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Ring → 0 ∈
(Base‘(Scalar‘𝑀))) |
10 | 7, 9 | jca 512 |
. . . . . . . . 9
⊢ (𝑆 ∈ Ring → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) |
11 | 3, 10 | syl 17 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) |
12 | 11 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) |
13 | 12 | adantr 481 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) |
14 | | ifcl 4504 |
. . . . . 6
⊢ (( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑋, 1 , 0 ) ∈
(Base‘(Scalar‘𝑀))) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → if(𝑥 = 𝑋, 1 , 0 ) ∈
(Base‘(Scalar‘𝑀))) |
16 | | linc1.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) |
17 | 15, 16 | fmptd 6988 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) |
18 | | fvex 6787 |
. . . . 5
⊢
(Base‘(Scalar‘𝑀)) ∈ V |
19 | | simp2 1136 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑉 ∈ 𝒫 𝐵) |
20 | | elmapg 8628 |
. . . . 5
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) |
21 | 18, 19, 20 | sylancr 587 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) |
22 | 17, 21 | mpbird 256 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) |
23 | | linc1.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
24 | 23 | pweqi 4551 |
. . . . . 6
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
25 | 24 | eleq2i 2830 |
. . . . 5
⊢ (𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 (Base‘𝑀)) |
26 | 25 | biimpi 215 |
. . . 4
⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
27 | 26 | 3ad2ant2 1133 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
28 | | lincval 45750 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
29 | 1, 22, 27, 28 | syl3anc 1370 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
30 | | eqid 2738 |
. . 3
⊢
(0g‘𝑀) = (0g‘𝑀) |
31 | | lmodgrp 20130 |
. . . . 5
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
32 | 31 | grpmndd 18589 |
. . . 4
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
33 | 32 | 3ad2ant1 1132 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑀 ∈ Mnd) |
34 | | simp3 1137 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
35 | 1 | adantr 481 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑀 ∈ LMod) |
36 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑋 ↔ 𝑦 = 𝑋)) |
37 | 36 | ifbid 4482 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 )) |
38 | | simpr 485 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) |
39 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) |
40 | 2, 39, 6 | lmod1cl 20150 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 1 ∈
(Base‘𝑆)) |
41 | 40 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝑆)) |
42 | 41 | adantr 481 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 1 ∈ (Base‘𝑆)) |
43 | 2, 39, 8 | lmod0cl 20149 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 0 ∈
(Base‘𝑆)) |
44 | 43 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 0 ∈ (Base‘𝑆)) |
45 | 44 | adantr 481 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 0 ∈ (Base‘𝑆)) |
46 | 42, 45 | ifcld 4505 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆)) |
47 | 16, 37, 38, 46 | fvmptd3 6898 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝐹‘𝑦) = if(𝑦 = 𝑋, 1 , 0 )) |
48 | 47, 46 | eqeltrd 2839 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝐹‘𝑦) ∈ (Base‘𝑆)) |
49 | | elelpwi 4545 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑦 ∈ 𝐵) |
50 | 49 | expcom 414 |
. . . . . . 7
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑦 ∈ 𝑉 → 𝑦 ∈ 𝐵)) |
51 | 50 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑦 ∈ 𝑉 → 𝑦 ∈ 𝐵)) |
52 | 51 | imp 407 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝐵) |
53 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
54 | 23, 2, 53, 39 | lmodvscl 20140 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝐹‘𝑦) ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) ∈ 𝐵) |
55 | 35, 48, 52, 54 | syl3anc 1370 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) ∈ 𝐵) |
56 | | eqid 2738 |
. . . 4
⊢ (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) |
57 | 55, 56 | fmptd 6988 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)):𝑉⟶𝐵) |
58 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (𝐹‘𝑦) = (𝐹‘𝑣)) |
59 | | id 22 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → 𝑦 = 𝑣) |
60 | 58, 59 | oveq12d 7293 |
. . . . . 6
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) |
61 | 60 | cbvmptv 5187 |
. . . . 5
⊢ (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) |
62 | | fvexd 6789 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (0g‘𝑀) ∈ V) |
63 | | ovexd 7310 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ∈ V) |
64 | 61, 19, 62, 63 | mptsuppd 8003 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) supp (0g‘𝑀)) = {𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)}) |
65 | | 2a1 28 |
. . . . . . 7
⊢ (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋))) |
66 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) |
67 | 6 | fvexi 6788 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
68 | 8 | fvexi 6788 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
69 | 67, 68 | ifex 4509 |
. . . . . . . . . . . . . 14
⊢ if(𝑣 = 𝑋, 1 , 0 ) ∈
V |
70 | | eqeq1 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑣 → (𝑥 = 𝑋 ↔ 𝑣 = 𝑋)) |
71 | 70 | ifbid 4482 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 )) |
72 | 71, 16 | fvmptg 6873 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ 𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) → (𝐹‘𝑣) = if(𝑣 = 𝑋, 1 , 0 )) |
73 | 66, 69, 72 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (𝐹‘𝑣) = if(𝑣 = 𝑋, 1 , 0 )) |
74 | | iffalse 4468 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 ) |
75 | 74 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 ) |
76 | 73, 75 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (𝐹‘𝑣) = 0 ) |
77 | 76 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = ( 0 (
·𝑠 ‘𝑀)𝑣)) |
78 | 1 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → 𝑀 ∈ LMod) |
79 | 78 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑀 ∈ LMod) |
80 | | elelpwi 4545 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑣 ∈ 𝐵) |
81 | 80 | expcom 414 |
. . . . . . . . . . . . . . 15
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
82 | 81 | 3ad2ant2 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
83 | 82 | imp 407 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝐵) |
84 | 83 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝐵) |
85 | 23, 2, 53, 8, 30 | lmod0vs 20156 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐵) → ( 0 (
·𝑠 ‘𝑀)𝑣) = (0g‘𝑀)) |
86 | 79, 84, 85 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ( 0 (
·𝑠 ‘𝑀)𝑣) = (0g‘𝑀)) |
87 | 77, 86 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = (0g‘𝑀)) |
88 | 87 | neeq1d 3003 |
. . . . . . . . 9
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) ↔ (0g‘𝑀) ≠
(0g‘𝑀))) |
89 | | eqneqall 2954 |
. . . . . . . . . 10
⊢
((0g‘𝑀) = (0g‘𝑀) → ((0g‘𝑀) ≠
(0g‘𝑀)
→ 𝑣 = 𝑋)) |
90 | 30, 89 | ax-mp 5 |
. . . . . . . . 9
⊢
((0g‘𝑀) ≠ (0g‘𝑀) → 𝑣 = 𝑋) |
91 | 88, 90 | syl6bi 252 |
. . . . . . . 8
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) |
92 | 91 | ex 413 |
. . . . . . 7
⊢ (¬
𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋))) |
93 | 65, 92 | pm2.61i 182 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) |
94 | 93 | ralrimiva 3103 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ∀𝑣 ∈ 𝑉 (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) |
95 | | rabsssn 4603 |
. . . . 5
⊢ ({𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)} ⊆ {𝑋} ↔ ∀𝑣 ∈ 𝑉 (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) |
96 | 94, 95 | sylibr 233 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → {𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)} ⊆ {𝑋}) |
97 | 64, 96 | eqsstrd 3959 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) supp (0g‘𝑀)) ⊆ {𝑋}) |
98 | 23, 30, 33, 19, 34, 57, 97 | gsumpt 19563 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋)) |
99 | | ovex 7308 |
. . . 4
⊢ ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ V |
100 | | fveq2 6774 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
101 | | id 22 |
. . . . . 6
⊢ (𝑦 = 𝑋 → 𝑦 = 𝑋) |
102 | 100, 101 | oveq12d 7293 |
. . . . 5
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
103 | 102, 56 | fvmptg 6873 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ V) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
104 | 34, 99, 103 | sylancl 586 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
105 | | iftrue 4465 |
. . . . . 6
⊢ (𝑥 = 𝑋 → if(𝑥 = 𝑋, 1 , 0 ) = 1 ) |
106 | 105, 16 | fvmptg 6873 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 1 ∈ V) → (𝐹‘𝑋) = 1 ) |
107 | 34, 67, 106 | sylancl 586 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) = 1 ) |
108 | 107 | oveq1d 7290 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) = ( 1 (
·𝑠 ‘𝑀)𝑋)) |
109 | | elelpwi 4545 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
110 | 109 | ancoms 459 |
. . . . 5
⊢ ((𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
111 | 110 | 3adant1 1129 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
112 | 23, 2, 53, 6 | lmodvs1 20151 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ( 1 (
·𝑠 ‘𝑀)𝑋) = 𝑋) |
113 | 1, 111, 112 | syl2anc 584 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ( 1 (
·𝑠 ‘𝑀)𝑋) = 𝑋) |
114 | 104, 108,
113 | 3eqtrd 2782 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = 𝑋) |
115 | 29, 98, 114 | 3eqtrd 2782 |
1
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋) |