Step | Hyp | Ref
| Expression |
1 | | simp1 1116 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑀 ∈ LMod) |
2 | | linc1.s |
. . . . . . . . . 10
⊢ 𝑆 = (Scalar‘𝑀) |
3 | 2 | lmodring 19364 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod → 𝑆 ∈ Ring) |
4 | 2 | eqcomi 2787 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑀) =
𝑆 |
5 | 4 | fveq2i 6502 |
. . . . . . . . . . 11
⊢
(Base‘(Scalar‘𝑀)) = (Base‘𝑆) |
6 | | linc1.1 |
. . . . . . . . . . 11
⊢ 1 =
(1r‘𝑆) |
7 | 5, 6 | ringidcl 19041 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Ring → 1 ∈
(Base‘(Scalar‘𝑀))) |
8 | | linc1.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑆) |
9 | 5, 8 | ring0cl 19042 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Ring → 0 ∈
(Base‘(Scalar‘𝑀))) |
10 | 7, 9 | jca 504 |
. . . . . . . . 9
⊢ (𝑆 ∈ Ring → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) |
11 | 3, 10 | syl 17 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) |
12 | 11 | 3ad2ant1 1113 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) |
13 | 12 | adantr 473 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) |
14 | | ifcl 4394 |
. . . . . 6
⊢ (( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑋, 1 , 0 ) ∈
(Base‘(Scalar‘𝑀))) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → if(𝑥 = 𝑋, 1 , 0 ) ∈
(Base‘(Scalar‘𝑀))) |
16 | | linc1.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) |
17 | 15, 16 | fmptd 6701 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) |
18 | | fvex 6512 |
. . . . 5
⊢
(Base‘(Scalar‘𝑀)) ∈ V |
19 | | simp2 1117 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑉 ∈ 𝒫 𝐵) |
20 | | elmapg 8219 |
. . . . 5
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) |
21 | 18, 19, 20 | sylancr 578 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) |
22 | 17, 21 | mpbird 249 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
𝑉)) |
23 | | linc1.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
24 | 23 | pweqi 4426 |
. . . . . 6
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) |
25 | 24 | eleq2i 2857 |
. . . . 5
⊢ (𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 (Base‘𝑀)) |
26 | 25 | biimpi 208 |
. . . 4
⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
27 | 26 | 3ad2ant2 1114 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
28 | | lincval 43837 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
29 | 1, 22, 27, 28 | syl3anc 1351 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
30 | | eqid 2778 |
. . 3
⊢
(0g‘𝑀) = (0g‘𝑀) |
31 | | lmodgrp 19363 |
. . . . 5
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
32 | | grpmnd 17898 |
. . . . 5
⊢ (𝑀 ∈ Grp → 𝑀 ∈ Mnd) |
33 | 31, 32 | syl 17 |
. . . 4
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
34 | 33 | 3ad2ant1 1113 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑀 ∈ Mnd) |
35 | | simp3 1118 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
36 | 1 | adantr 473 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑀 ∈ LMod) |
37 | | eqeq1 2782 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑋 ↔ 𝑦 = 𝑋)) |
38 | 37 | ifbid 4372 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 )) |
39 | | simpr 477 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) |
40 | | eqid 2778 |
. . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) |
41 | 2, 40, 6 | lmod1cl 19383 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 1 ∈
(Base‘𝑆)) |
42 | 41 | 3ad2ant1 1113 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝑆)) |
43 | 42 | adantr 473 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 1 ∈ (Base‘𝑆)) |
44 | 2, 40, 8 | lmod0cl 19382 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 0 ∈
(Base‘𝑆)) |
45 | 44 | 3ad2ant1 1113 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 0 ∈ (Base‘𝑆)) |
46 | 45 | adantr 473 |
. . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 0 ∈ (Base‘𝑆)) |
47 | 43, 46 | ifcld 4395 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆)) |
48 | 16, 38, 39, 47 | fvmptd3 6617 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝐹‘𝑦) = if(𝑦 = 𝑋, 1 , 0 )) |
49 | 48, 47 | eqeltrd 2866 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝐹‘𝑦) ∈ (Base‘𝑆)) |
50 | | elelpwi 4435 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑦 ∈ 𝐵) |
51 | 50 | expcom 406 |
. . . . . . 7
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑦 ∈ 𝑉 → 𝑦 ∈ 𝐵)) |
52 | 51 | 3ad2ant2 1114 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑦 ∈ 𝑉 → 𝑦 ∈ 𝐵)) |
53 | 52 | imp 398 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝐵) |
54 | | eqid 2778 |
. . . . . 6
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
55 | 23, 2, 54, 40 | lmodvscl 19373 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝐹‘𝑦) ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) ∈ 𝐵) |
56 | 36, 49, 53, 55 | syl3anc 1351 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) ∈ 𝐵) |
57 | | eqid 2778 |
. . . 4
⊢ (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) |
58 | 56, 57 | fmptd 6701 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)):𝑉⟶𝐵) |
59 | | fveq2 6499 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (𝐹‘𝑦) = (𝐹‘𝑣)) |
60 | | id 22 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → 𝑦 = 𝑣) |
61 | 59, 60 | oveq12d 6994 |
. . . . . 6
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) |
62 | 61 | cbvmptv 5028 |
. . . . 5
⊢ (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) |
63 | | fvexd 6514 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (0g‘𝑀) ∈ V) |
64 | | ovexd 7010 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ∈ V) |
65 | 62, 19, 63, 64 | mptsuppd 7656 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) supp (0g‘𝑀)) = {𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)}) |
66 | | 2a1 28 |
. . . . . . 7
⊢ (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋))) |
67 | | simprr 760 |
. . . . . . . . . . . . . 14
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) |
68 | 6 | fvexi 6513 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
V |
69 | 8 | fvexi 6513 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
70 | 68, 69 | ifex 4398 |
. . . . . . . . . . . . . 14
⊢ if(𝑣 = 𝑋, 1 , 0 ) ∈
V |
71 | | eqeq1 2782 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑣 → (𝑥 = 𝑋 ↔ 𝑣 = 𝑋)) |
72 | 71 | ifbid 4372 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 )) |
73 | 72, 16 | fvmptg 6593 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ 𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) → (𝐹‘𝑣) = if(𝑣 = 𝑋, 1 , 0 )) |
74 | 67, 70, 73 | sylancl 577 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (𝐹‘𝑣) = if(𝑣 = 𝑋, 1 , 0 )) |
75 | | iffalse 4359 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 ) |
76 | 75 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 ) |
77 | 74, 76 | eqtrd 2814 |
. . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (𝐹‘𝑣) = 0 ) |
78 | 77 | oveq1d 6991 |
. . . . . . . . . . 11
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = ( 0 (
·𝑠 ‘𝑀)𝑣)) |
79 | 1 | adantr 473 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → 𝑀 ∈ LMod) |
80 | 79 | adantl 474 |
. . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑀 ∈ LMod) |
81 | | elelpwi 4435 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑣 ∈ 𝐵) |
82 | 81 | expcom 406 |
. . . . . . . . . . . . . . 15
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
83 | 82 | 3ad2ant2 1114 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) |
84 | 83 | imp 398 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝐵) |
85 | 84 | adantl 474 |
. . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝐵) |
86 | 23, 2, 54, 8, 30 | lmod0vs 19389 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐵) → ( 0 (
·𝑠 ‘𝑀)𝑣) = (0g‘𝑀)) |
87 | 80, 85, 86 | syl2anc 576 |
. . . . . . . . . . 11
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ( 0 (
·𝑠 ‘𝑀)𝑣) = (0g‘𝑀)) |
88 | 78, 87 | eqtrd 2814 |
. . . . . . . . . 10
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = (0g‘𝑀)) |
89 | 88 | neeq1d 3026 |
. . . . . . . . 9
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) ↔ (0g‘𝑀) ≠
(0g‘𝑀))) |
90 | | eqneqall 2978 |
. . . . . . . . . 10
⊢
((0g‘𝑀) = (0g‘𝑀) → ((0g‘𝑀) ≠
(0g‘𝑀)
→ 𝑣 = 𝑋)) |
91 | 30, 90 | ax-mp 5 |
. . . . . . . . 9
⊢
((0g‘𝑀) ≠ (0g‘𝑀) → 𝑣 = 𝑋) |
92 | 89, 91 | syl6bi 245 |
. . . . . . . 8
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) |
93 | 92 | ex 405 |
. . . . . . 7
⊢ (¬
𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋))) |
94 | 66, 93 | pm2.61i 177 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) |
95 | 94 | ralrimiva 3132 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ∀𝑣 ∈ 𝑉 (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) |
96 | | rabsssn 4479 |
. . . . 5
⊢ ({𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)} ⊆ {𝑋} ↔ ∀𝑣 ∈ 𝑉 (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) |
97 | 95, 96 | sylibr 226 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → {𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)} ⊆ {𝑋}) |
98 | 65, 97 | eqsstrd 3895 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) supp (0g‘𝑀)) ⊆ {𝑋}) |
99 | 23, 30, 34, 19, 35, 58, 98 | gsumpt 18835 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋)) |
100 | | ovex 7008 |
. . . 4
⊢ ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ V |
101 | | fveq2 6499 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
102 | | id 22 |
. . . . . 6
⊢ (𝑦 = 𝑋 → 𝑦 = 𝑋) |
103 | 101, 102 | oveq12d 6994 |
. . . . 5
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
104 | 103, 57 | fvmptg 6593 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ V) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
105 | 35, 100, 104 | sylancl 577 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) |
106 | | iftrue 4356 |
. . . . . 6
⊢ (𝑥 = 𝑋 → if(𝑥 = 𝑋, 1 , 0 ) = 1 ) |
107 | 106, 16 | fvmptg 6593 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 1 ∈ V) → (𝐹‘𝑋) = 1 ) |
108 | 35, 68, 107 | sylancl 577 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) = 1 ) |
109 | 108 | oveq1d 6991 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) = ( 1 (
·𝑠 ‘𝑀)𝑋)) |
110 | | elelpwi 4435 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) |
111 | 110 | ancoms 451 |
. . . . 5
⊢ ((𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
112 | 111 | 3adant1 1110 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
113 | 23, 2, 54, 6 | lmodvs1 19384 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ( 1 (
·𝑠 ‘𝑀)𝑋) = 𝑋) |
114 | 1, 112, 113 | syl2anc 576 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ( 1 (
·𝑠 ‘𝑀)𝑋) = 𝑋) |
115 | 105, 109,
114 | 3eqtrd 2818 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = 𝑋) |
116 | 29, 99, 115 | 3eqtrd 2818 |
1
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋) |