Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linc1 Structured version   Visualization version   GIF version

Theorem linc1 45654
Description: A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
linc1.b 𝐵 = (Base‘𝑀)
linc1.s 𝑆 = (Scalar‘𝑀)
linc1.0 0 = (0g𝑆)
linc1.1 1 = (1r𝑆)
linc1.f 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
Assertion
Ref Expression
linc1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥,𝑋   𝑥, 0   𝑥, 1
Allowed substitution hints:   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem linc1
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ LMod)
2 linc1.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑀)
32lmodring 20046 . . . . . . . . 9 (𝑀 ∈ LMod → 𝑆 ∈ Ring)
42eqcomi 2747 . . . . . . . . . . . 12 (Scalar‘𝑀) = 𝑆
54fveq2i 6759 . . . . . . . . . . 11 (Base‘(Scalar‘𝑀)) = (Base‘𝑆)
6 linc1.1 . . . . . . . . . . 11 1 = (1r𝑆)
75, 6ringidcl 19722 . . . . . . . . . 10 (𝑆 ∈ Ring → 1 ∈ (Base‘(Scalar‘𝑀)))
8 linc1.0 . . . . . . . . . . 11 0 = (0g𝑆)
95, 8ring0cl 19723 . . . . . . . . . 10 (𝑆 ∈ Ring → 0 ∈ (Base‘(Scalar‘𝑀)))
107, 9jca 511 . . . . . . . . 9 (𝑆 ∈ Ring → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
113, 10syl 17 . . . . . . . 8 (𝑀 ∈ LMod → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
12113ad2ant1 1131 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
1312adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → ( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))))
14 ifcl 4501 . . . . . 6 (( 1 ∈ (Base‘(Scalar‘𝑀)) ∧ 0 ∈ (Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
1513, 14syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑥𝑉) → if(𝑥 = 𝑋, 1 , 0 ) ∈ (Base‘(Scalar‘𝑀)))
16 linc1.f . . . . 5 𝐹 = (𝑥𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 ))
1715, 16fmptd 6970 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))
18 fvex 6769 . . . . 5 (Base‘(Scalar‘𝑀)) ∈ V
19 simp2 1135 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 𝐵)
20 elmapg 8586 . . . . 5 (((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2118, 19, 20sylancr 586 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))))
2217, 21mpbird 256 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉))
23 linc1.b . . . . . . 7 𝐵 = (Base‘𝑀)
2423pweqi 4548 . . . . . 6 𝒫 𝐵 = 𝒫 (Base‘𝑀)
2524eleq2i 2830 . . . . 5 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
2625biimpi 215 . . . 4 (𝑉 ∈ 𝒫 𝐵𝑉 ∈ 𝒫 (Base‘𝑀))
27263ad2ant2 1132 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀))
28 lincval 45638 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
291, 22, 27, 28syl3anc 1369 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))))
30 eqid 2738 . . 3 (0g𝑀) = (0g𝑀)
31 lmodgrp 20045 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
3231grpmndd 18504 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
33323ad2ant1 1131 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑀 ∈ Mnd)
34 simp3 1136 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝑉)
351adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑀 ∈ LMod)
36 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = 𝑋𝑦 = 𝑋))
3736ifbid 4479 . . . . . . 7 (𝑥 = 𝑦 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 ))
38 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝑉)
39 eqid 2738 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
402, 39, 6lmod1cl 20065 . . . . . . . . . 10 (𝑀 ∈ LMod → 1 ∈ (Base‘𝑆))
41403ad2ant1 1131 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 1 ∈ (Base‘𝑆))
4241adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 1 ∈ (Base‘𝑆))
432, 39, 8lmod0cl 20064 . . . . . . . . . 10 (𝑀 ∈ LMod → 0 ∈ (Base‘𝑆))
44433ad2ant1 1131 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 0 ∈ (Base‘𝑆))
4544adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 0 ∈ (Base‘𝑆))
4642, 45ifcld 4502 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆))
4716, 37, 38, 46fvmptd3 6880 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) = if(𝑦 = 𝑋, 1 , 0 ))
4847, 46eqeltrd 2839 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → (𝐹𝑦) ∈ (Base‘𝑆))
49 elelpwi 4542 . . . . . . . 8 ((𝑦𝑉𝑉 ∈ 𝒫 𝐵) → 𝑦𝐵)
5049expcom 413 . . . . . . 7 (𝑉 ∈ 𝒫 𝐵 → (𝑦𝑉𝑦𝐵))
51503ad2ant2 1132 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉𝑦𝐵))
5251imp 406 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → 𝑦𝐵)
53 eqid 2738 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
5423, 2, 53, 39lmodvscl 20055 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑦) ∈ (Base‘𝑆) ∧ 𝑦𝐵) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
5535, 48, 52, 54syl3anc 1369 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑦𝑉) → ((𝐹𝑦)( ·𝑠𝑀)𝑦) ∈ 𝐵)
56 eqid 2738 . . . 4 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))
5755, 56fmptd 6970 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)):𝑉𝐵)
58 fveq2 6756 . . . . . . 7 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
59 id 22 . . . . . . 7 (𝑦 = 𝑣𝑦 = 𝑣)
6058, 59oveq12d 7273 . . . . . 6 (𝑦 = 𝑣 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑣)( ·𝑠𝑀)𝑣))
6160cbvmptv 5183 . . . . 5 (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) = (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))
62 fvexd 6771 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (0g𝑀) ∈ V)
63 ovexd 7290 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ V)
6461, 19, 62, 63mptsuppd 7974 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) = {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)})
65 2a1 28 . . . . . . 7 (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
66 simprr 769 . . . . . . . . . . . . . 14 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝑉)
676fvexi 6770 . . . . . . . . . . . . . . 15 1 ∈ V
688fvexi 6770 . . . . . . . . . . . . . . 15 0 ∈ V
6967, 68ifex 4506 . . . . . . . . . . . . . 14 if(𝑣 = 𝑋, 1 , 0 ) ∈ V
70 eqeq1 2742 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (𝑥 = 𝑋𝑣 = 𝑋))
7170ifbid 4479 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 ))
7271, 16fvmptg 6855 . . . . . . . . . . . . . 14 ((𝑣𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
7366, 69, 72sylancl 585 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = if(𝑣 = 𝑋, 1 , 0 ))
74 iffalse 4465 . . . . . . . . . . . . . 14 𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7574adantr 480 . . . . . . . . . . . . 13 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 )
7673, 75eqtrd 2778 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (𝐹𝑣) = 0 )
7776oveq1d 7270 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = ( 0 ( ·𝑠𝑀)𝑣))
781adantr 480 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
7978adantl 481 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑀 ∈ LMod)
80 elelpwi 4542 . . . . . . . . . . . . . . . 16 ((𝑣𝑉𝑉 ∈ 𝒫 𝐵) → 𝑣𝐵)
8180expcom 413 . . . . . . . . . . . . . . 15 (𝑉 ∈ 𝒫 𝐵 → (𝑣𝑉𝑣𝐵))
82813ad2ant2 1132 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑣𝑉𝑣𝐵))
8382imp 406 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → 𝑣𝐵)
8483adantl 481 . . . . . . . . . . . 12 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → 𝑣𝐵)
8523, 2, 53, 8, 30lmod0vs 20071 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑣𝐵) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
8679, 84, 85syl2anc 583 . . . . . . . . . . 11 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ( 0 ( ·𝑠𝑀)𝑣) = (0g𝑀))
8777, 86eqtrd 2778 . . . . . . . . . 10 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) = (0g𝑀))
8887neeq1d 3002 . . . . . . . . 9 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
89 eqneqall 2953 . . . . . . . . . 10 ((0g𝑀) = (0g𝑀) → ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋))
9030, 89ax-mp 5 . . . . . . . . 9 ((0g𝑀) ≠ (0g𝑀) → 𝑣 = 𝑋)
9188, 90syl6bi 252 . . . . . . . 8 ((¬ 𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉)) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9291ex 412 . . . . . . 7 𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋)))
9365, 92pm2.61i 182 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) ∧ 𝑣𝑉) → (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9493ralrimiva 3107 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
95 rabsssn 4600 . . . . 5 ({𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋} ↔ ∀𝑣𝑉 (((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀) → 𝑣 = 𝑋))
9694, 95sylibr 233 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → {𝑣𝑉 ∣ ((𝐹𝑣)( ·𝑠𝑀)𝑣) ≠ (0g𝑀)} ⊆ {𝑋})
9764, 96eqsstrd 3955 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦)) supp (0g𝑀)) ⊆ {𝑋})
9823, 30, 33, 19, 34, 57, 97gsumpt 19478 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝑀 Σg (𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))) = ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋))
99 ovex 7288 . . . 4 ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V
100 fveq2 6756 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
101 id 22 . . . . . 6 (𝑦 = 𝑋𝑦 = 𝑋)
102100, 101oveq12d 7273 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑦)( ·𝑠𝑀)𝑦) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
103102, 56fvmptg 6855 . . . 4 ((𝑋𝑉 ∧ ((𝐹𝑋)( ·𝑠𝑀)𝑋) ∈ V) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
10434, 99, 103sylancl 585 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = ((𝐹𝑋)( ·𝑠𝑀)𝑋))
105 iftrue 4462 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 = 𝑋, 1 , 0 ) = 1 )
106105, 16fvmptg 6855 . . . . 5 ((𝑋𝑉1 ∈ V) → (𝐹𝑋) = 1 )
10734, 67, 106sylancl 585 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹𝑋) = 1 )
108107oveq1d 7270 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝐹𝑋)( ·𝑠𝑀)𝑋) = ( 1 ( ·𝑠𝑀)𝑋))
109 elelpwi 4542 . . . . . 6 ((𝑋𝑉𝑉 ∈ 𝒫 𝐵) → 𝑋𝐵)
110109ancoms 458 . . . . 5 ((𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
1111103adant1 1128 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → 𝑋𝐵)
11223, 2, 53, 6lmodvs1 20066 . . . 4 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
1131, 111, 112syl2anc 583 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ( 1 ( ·𝑠𝑀)𝑋) = 𝑋)
114104, 108, 1133eqtrd 2782 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → ((𝑦𝑉 ↦ ((𝐹𝑦)( ·𝑠𝑀)𝑦))‘𝑋) = 𝑋)
11529, 98, 1143eqtrd 2782 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵𝑋𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  wss 3883  ifcif 4456  𝒫 cpw 4530  {csn 4558  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  1rcur 19652  Ringcrg 19698  LModclmod 20038   linC clinc 45633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-linc 45635
This theorem is referenced by:  lcoss  45665
  Copyright terms: Public domain W3C validator