| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1 1137 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑀 ∈ LMod) | 
| 2 |  | linc1.s | . . . . . . . . . 10
⊢ 𝑆 = (Scalar‘𝑀) | 
| 3 | 2 | lmodring 20866 | . . . . . . . . 9
⊢ (𝑀 ∈ LMod → 𝑆 ∈ Ring) | 
| 4 | 2 | eqcomi 2746 | . . . . . . . . . . . 12
⊢
(Scalar‘𝑀) =
𝑆 | 
| 5 | 4 | fveq2i 6909 | . . . . . . . . . . 11
⊢
(Base‘(Scalar‘𝑀)) = (Base‘𝑆) | 
| 6 |  | linc1.1 | . . . . . . . . . . 11
⊢  1 =
(1r‘𝑆) | 
| 7 | 5, 6 | ringidcl 20262 | . . . . . . . . . 10
⊢ (𝑆 ∈ Ring → 1 ∈
(Base‘(Scalar‘𝑀))) | 
| 8 |  | linc1.0 | . . . . . . . . . . 11
⊢  0 =
(0g‘𝑆) | 
| 9 | 5, 8 | ring0cl 20264 | . . . . . . . . . 10
⊢ (𝑆 ∈ Ring → 0 ∈
(Base‘(Scalar‘𝑀))) | 
| 10 | 7, 9 | jca 511 | . . . . . . . . 9
⊢ (𝑆 ∈ Ring → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) | 
| 11 | 3, 10 | syl 17 | . . . . . . . 8
⊢ (𝑀 ∈ LMod → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) | 
| 12 | 11 | 3ad2ant1 1134 | . . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) | 
| 13 | 12 | adantr 480 | . . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → ( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀)))) | 
| 14 |  | ifcl 4571 | . . . . . 6
⊢ (( 1 ∈
(Base‘(Scalar‘𝑀)) ∧ 0 ∈
(Base‘(Scalar‘𝑀))) → if(𝑥 = 𝑋, 1 , 0 ) ∈
(Base‘(Scalar‘𝑀))) | 
| 15 | 13, 14 | syl 17 | . . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ 𝑉) → if(𝑥 = 𝑋, 1 , 0 ) ∈
(Base‘(Scalar‘𝑀))) | 
| 16 |  | linc1.f | . . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) | 
| 17 | 15, 16 | fmptd 7134 | . . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹:𝑉⟶(Base‘(Scalar‘𝑀))) | 
| 18 |  | fvex 6919 | . . . . 5
⊢
(Base‘(Scalar‘𝑀)) ∈ V | 
| 19 |  | simp2 1138 | . . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑉 ∈ 𝒫 𝐵) | 
| 20 |  | elmapg 8879 | . . . . 5
⊢
(((Base‘(Scalar‘𝑀)) ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) | 
| 21 | 18, 19, 20 | sylancr 587 | . . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ↔ 𝐹:𝑉⟶(Base‘(Scalar‘𝑀)))) | 
| 22 | 17, 21 | mpbird 257 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) | 
| 23 |  | linc1.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝑀) | 
| 24 | 23 | pweqi 4616 | . . . . . 6
⊢ 𝒫
𝐵 = 𝒫
(Base‘𝑀) | 
| 25 | 24 | eleq2i 2833 | . . . . 5
⊢ (𝑉 ∈ 𝒫 𝐵 ↔ 𝑉 ∈ 𝒫 (Base‘𝑀)) | 
| 26 | 25 | biimpi 216 | . . . 4
⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ∈ 𝒫 (Base‘𝑀)) | 
| 27 | 26 | 3ad2ant2 1135 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑉 ∈ 𝒫 (Base‘𝑀)) | 
| 28 |  | lincval 48326 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)))) | 
| 29 | 1, 22, 27, 28 | syl3anc 1373 | . 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)))) | 
| 30 |  | eqid 2737 | . . 3
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 31 |  | lmodgrp 20865 | . . . . 5
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | 
| 32 | 31 | grpmndd 18964 | . . . 4
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) | 
| 33 | 32 | 3ad2ant1 1134 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑀 ∈ Mnd) | 
| 34 |  | simp3 1139 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | 
| 35 | 1 | adantr 480 | . . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑀 ∈ LMod) | 
| 36 |  | eqeq1 2741 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑋 ↔ 𝑦 = 𝑋)) | 
| 37 | 36 | ifbid 4549 | . . . . . . 7
⊢ (𝑥 = 𝑦 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑦 = 𝑋, 1 , 0 )) | 
| 38 |  | simpr 484 | . . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) | 
| 39 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 40 | 2, 39, 6 | lmod1cl 20887 | . . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 1 ∈
(Base‘𝑆)) | 
| 41 | 40 | 3ad2ant1 1134 | . . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝑆)) | 
| 42 | 41 | adantr 480 | . . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 1 ∈ (Base‘𝑆)) | 
| 43 | 2, 39, 8 | lmod0cl 20886 | . . . . . . . . . 10
⊢ (𝑀 ∈ LMod → 0 ∈
(Base‘𝑆)) | 
| 44 | 43 | 3ad2ant1 1134 | . . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 0 ∈ (Base‘𝑆)) | 
| 45 | 44 | adantr 480 | . . . . . . . 8
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 0 ∈ (Base‘𝑆)) | 
| 46 | 42, 45 | ifcld 4572 | . . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → if(𝑦 = 𝑋, 1 , 0 ) ∈ (Base‘𝑆)) | 
| 47 | 16, 37, 38, 46 | fvmptd3 7039 | . . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝐹‘𝑦) = if(𝑦 = 𝑋, 1 , 0 )) | 
| 48 | 47, 46 | eqeltrd 2841 | . . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → (𝐹‘𝑦) ∈ (Base‘𝑆)) | 
| 49 |  | elelpwi 4610 | . . . . . . . 8
⊢ ((𝑦 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑦 ∈ 𝐵) | 
| 50 | 49 | expcom 413 | . . . . . . 7
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑦 ∈ 𝑉 → 𝑦 ∈ 𝐵)) | 
| 51 | 50 | 3ad2ant2 1135 | . . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑦 ∈ 𝑉 → 𝑦 ∈ 𝐵)) | 
| 52 | 51 | imp 406 | . . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝐵) | 
| 53 |  | eqid 2737 | . . . . . 6
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) | 
| 54 | 23, 2, 53, 39 | lmodvscl 20876 | . . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝐹‘𝑦) ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) ∈ 𝐵) | 
| 55 | 35, 48, 52, 54 | syl3anc 1373 | . . . 4
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ 𝑉) → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) ∈ 𝐵) | 
| 56 |  | eqid 2737 | . . . 4
⊢ (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) | 
| 57 | 55, 56 | fmptd 7134 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)):𝑉⟶𝐵) | 
| 58 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑦 = 𝑣 → (𝐹‘𝑦) = (𝐹‘𝑣)) | 
| 59 |  | id 22 | . . . . . . 7
⊢ (𝑦 = 𝑣 → 𝑦 = 𝑣) | 
| 60 | 58, 59 | oveq12d 7449 | . . . . . 6
⊢ (𝑦 = 𝑣 → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) | 
| 61 | 60 | cbvmptv 5255 | . . . . 5
⊢ (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣)) | 
| 62 |  | fvexd 6921 | . . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (0g‘𝑀) ∈ V) | 
| 63 |  | ovexd 7466 | . . . . 5
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ∈ V) | 
| 64 | 61, 19, 62, 63 | mptsuppd 8212 | . . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) supp (0g‘𝑀)) = {𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)}) | 
| 65 |  | 2a1 28 | . . . . . . 7
⊢ (𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋))) | 
| 66 |  | simprr 773 | . . . . . . . . . . . . . 14
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) | 
| 67 | 6 | fvexi 6920 | . . . . . . . . . . . . . . 15
⊢  1 ∈
V | 
| 68 | 8 | fvexi 6920 | . . . . . . . . . . . . . . 15
⊢  0 ∈
V | 
| 69 | 67, 68 | ifex 4576 | . . . . . . . . . . . . . 14
⊢ if(𝑣 = 𝑋, 1 , 0 ) ∈
V | 
| 70 |  | eqeq1 2741 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑣 → (𝑥 = 𝑋 ↔ 𝑣 = 𝑋)) | 
| 71 | 70 | ifbid 4549 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → if(𝑥 = 𝑋, 1 , 0 ) = if(𝑣 = 𝑋, 1 , 0 )) | 
| 72 | 71, 16 | fvmptg 7014 | . . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ 𝑉 ∧ if(𝑣 = 𝑋, 1 , 0 ) ∈ V) → (𝐹‘𝑣) = if(𝑣 = 𝑋, 1 , 0 )) | 
| 73 | 66, 69, 72 | sylancl 586 | . . . . . . . . . . . . 13
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (𝐹‘𝑣) = if(𝑣 = 𝑋, 1 , 0 )) | 
| 74 |  | iffalse 4534 | . . . . . . . . . . . . . 14
⊢ (¬
𝑣 = 𝑋 → if(𝑣 = 𝑋, 1 , 0 ) = 0 ) | 
| 75 | 74 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → if(𝑣 = 𝑋, 1 , 0 ) = 0 ) | 
| 76 | 73, 75 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (𝐹‘𝑣) = 0 ) | 
| 77 | 76 | oveq1d 7446 | . . . . . . . . . . 11
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = ( 0 (
·𝑠 ‘𝑀)𝑣)) | 
| 78 | 1 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → 𝑀 ∈ LMod) | 
| 79 | 78 | adantl 481 | . . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑀 ∈ LMod) | 
| 80 |  | elelpwi 4610 | . . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑣 ∈ 𝐵) | 
| 81 | 80 | expcom 413 | . . . . . . . . . . . . . . 15
⊢ (𝑉 ∈ 𝒫 𝐵 → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) | 
| 82 | 81 | 3ad2ant2 1135 | . . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑣 ∈ 𝑉 → 𝑣 ∈ 𝐵)) | 
| 83 | 82 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝐵) | 
| 84 | 83 | adantl 481 | . . . . . . . . . . . 12
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝐵) | 
| 85 | 23, 2, 53, 8, 30 | lmod0vs 20893 | . . . . . . . . . . . 12
⊢ ((𝑀 ∈ LMod ∧ 𝑣 ∈ 𝐵) → ( 0 (
·𝑠 ‘𝑀)𝑣) = (0g‘𝑀)) | 
| 86 | 79, 84, 85 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ( 0 (
·𝑠 ‘𝑀)𝑣) = (0g‘𝑀)) | 
| 87 | 77, 86 | eqtrd 2777 | . . . . . . . . . 10
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) = (0g‘𝑀)) | 
| 88 | 87 | neeq1d 3000 | . . . . . . . . 9
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) ↔ (0g‘𝑀) ≠
(0g‘𝑀))) | 
| 89 |  | eqneqall 2951 | . . . . . . . . . 10
⊢
((0g‘𝑀) = (0g‘𝑀) → ((0g‘𝑀) ≠
(0g‘𝑀)
→ 𝑣 = 𝑋)) | 
| 90 | 30, 89 | ax-mp 5 | . . . . . . . . 9
⊢
((0g‘𝑀) ≠ (0g‘𝑀) → 𝑣 = 𝑋) | 
| 91 | 88, 90 | biimtrdi 253 | . . . . . . . 8
⊢ ((¬
𝑣 = 𝑋 ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉)) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) | 
| 92 | 91 | ex 412 | . . . . . . 7
⊢ (¬
𝑣 = 𝑋 → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋))) | 
| 93 | 65, 92 | pm2.61i 182 | . . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ 𝑣 ∈ 𝑉) → (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) | 
| 94 | 93 | ralrimiva 3146 | . . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ∀𝑣 ∈ 𝑉 (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) | 
| 95 |  | rabsssn 4668 | . . . . 5
⊢ ({𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)} ⊆ {𝑋} ↔ ∀𝑣 ∈ 𝑉 (((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀) → 𝑣 = 𝑋)) | 
| 96 | 94, 95 | sylibr 234 | . . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → {𝑣 ∈ 𝑉 ∣ ((𝐹‘𝑣)( ·𝑠
‘𝑀)𝑣) ≠ (0g‘𝑀)} ⊆ {𝑋}) | 
| 97 | 64, 96 | eqsstrd 4018 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦)) supp (0g‘𝑀)) ⊆ {𝑋}) | 
| 98 | 23, 30, 33, 19, 34, 57, 97 | gsumpt 19980 | . 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝑀 Σg (𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋)) | 
| 99 |  | ovex 7464 | . . . 4
⊢ ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ V | 
| 100 |  | fveq2 6906 | . . . . . 6
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | 
| 101 |  | id 22 | . . . . . 6
⊢ (𝑦 = 𝑋 → 𝑦 = 𝑋) | 
| 102 | 100, 101 | oveq12d 7449 | . . . . 5
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) | 
| 103 | 102, 56 | fvmptg 7014 | . . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) ∈ V) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) | 
| 104 | 34, 99, 103 | sylancl 586 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋)) | 
| 105 |  | iftrue 4531 | . . . . . 6
⊢ (𝑥 = 𝑋 → if(𝑥 = 𝑋, 1 , 0 ) = 1 ) | 
| 106 | 105, 16 | fvmptg 7014 | . . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 1 ∈ V) → (𝐹‘𝑋) = 1 ) | 
| 107 | 34, 67, 106 | sylancl 586 | . . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹‘𝑋) = 1 ) | 
| 108 | 107 | oveq1d 7446 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝐹‘𝑋)( ·𝑠
‘𝑀)𝑋) = ( 1 (
·𝑠 ‘𝑀)𝑋)) | 
| 109 |  | elelpwi 4610 | . . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑋 ∈ 𝐵) | 
| 110 | 109 | ancoms 458 | . . . . 5
⊢ ((𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) | 
| 111 | 110 | 3adant1 1131 | . . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) | 
| 112 | 23, 2, 53, 6 | lmodvs1 20888 | . . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ( 1 (
·𝑠 ‘𝑀)𝑋) = 𝑋) | 
| 113 | 1, 111, 112 | syl2anc 584 | . . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ( 1 (
·𝑠 ‘𝑀)𝑋) = 𝑋) | 
| 114 | 104, 108,
113 | 3eqtrd 2781 | . 2
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → ((𝑦 ∈ 𝑉 ↦ ((𝐹‘𝑦)( ·𝑠
‘𝑀)𝑦))‘𝑋) = 𝑋) | 
| 115 | 29, 98, 114 | 3eqtrd 2781 | 1
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋) |