Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(1o mPoly 𝑅) = (1o mPoly 𝑅) |
2 | | psr1baslem 21266 |
. . 3
⊢
(ℕ0 ↑m 1o) = {𝑑 ∈ (ℕ0
↑m 1o) ∣ (◡𝑑 “ ℕ) ∈
Fin} |
3 | | eqid 2738 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
4 | | eqid 2738 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
5 | | 1onn 8432 |
. . . 4
⊢
1o ∈ ω |
6 | 5 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 1o ∈
ω) |
7 | | ply1coe.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
8 | | eqid 2738 |
. . . 4
⊢
(PwSer1‘𝑅) = (PwSer1‘𝑅) |
9 | | ply1coe.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
10 | 7, 8, 9 | ply1bas 21276 |
. . 3
⊢ 𝐵 = (Base‘(1o
mPoly 𝑅)) |
11 | | ply1coe.n |
. . . 4
⊢ · = (
·𝑠 ‘𝑃) |
12 | 7, 1, 11 | ply1vsca 21307 |
. . 3
⊢ · = (
·𝑠 ‘(1o mPoly 𝑅)) |
13 | | simpl 482 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝑅 ∈ Ring) |
14 | | simpr 484 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 ∈ 𝐵) |
15 | 1, 2, 3, 4, 6, 10,
12, 13, 14 | mplcoe1 21148 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))))))) |
16 | | ply1coe.a |
. . . . . . 7
⊢ 𝐴 = (coe1‘𝐾) |
17 | 16 | fvcoe1 21288 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐵 ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝐾‘𝑎) = (𝐴‘(𝑎‘∅))) |
18 | 17 | adantll 710 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝐾‘𝑎) = (𝐴‘(𝑎‘∅))) |
19 | 5 | a1i 11 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 1o ∈
ω) |
20 | | eqid 2738 |
. . . . . . 7
⊢
(mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly
𝑅)) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(.g‘(mulGrp‘(1o mPoly 𝑅))) =
(.g‘(mulGrp‘(1o mPoly 𝑅))) |
22 | | eqid 2738 |
. . . . . . 7
⊢
(1o mVar 𝑅) = (1o mVar 𝑅) |
23 | | simpll 763 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑅 ∈ Ring) |
24 | | simpr 484 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑎 ∈ (ℕ0
↑m 1o)) |
25 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
26 | | 0ex 5226 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
27 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ∅ →
((1o mVar 𝑅)‘𝑏) = ((1o mVar 𝑅)‘∅)) |
28 | 27 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ →
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
29 | 27 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ →
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
30 | 28, 29 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ →
((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))
↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)))) |
31 | 26, 30 | ralsn 4614 |
. . . . . . . . . 10
⊢
(∀𝑏 ∈
{∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))
↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
32 | 25, 31 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
33 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ →
((1o mVar 𝑅)‘𝑥) = ((1o mVar 𝑅)‘∅)) |
34 | 33 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ →
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅))) |
35 | 33 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ →
(((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
36 | 34, 35 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ →
((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))) |
37 | 36 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (∀𝑏 ∈ {∅}
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))) |
38 | 26, 37 | ralsn 4614 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{∅}∀𝑏 ∈
{∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
39 | 32, 38 | sylibr 233 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
40 | | df1o2 8279 |
. . . . . . . . 9
⊢
1o = {∅} |
41 | 40 | raleqi 3337 |
. . . . . . . . 9
⊢
(∀𝑏 ∈
1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
42 | 40, 41 | raleqbii 3160 |
. . . . . . . 8
⊢
(∀𝑥 ∈
1o ∀𝑏
∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
43 | 39, 42 | sylibr 233 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑥 ∈ 1o ∀𝑏 ∈ 1o
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
44 | 1, 2, 3, 4, 19, 20, 21, 22, 23, 24, 43 | mplcoe5 21151 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))) = ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ 1o ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))))) |
45 | 40 | mpteq1i 5166 |
. . . . . . . 8
⊢ (𝑐 ∈ 1o ↦
((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))) = (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))) |
46 | 45 | oveq2i 7266 |
. . . . . . 7
⊢
((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦
((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) |
47 | 1 | mplring 21134 |
. . . . . . . . . . 11
⊢
((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly
𝑅) ∈
Ring) |
48 | 5, 47 | mpan 686 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1o mPoly 𝑅)
∈ Ring) |
49 | 20 | ringmgp 19704 |
. . . . . . . . . 10
⊢
((1o mPoly 𝑅) ∈ Ring →
(mulGrp‘(1o mPoly 𝑅)) ∈ Mnd) |
50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(mulGrp‘(1o mPoly 𝑅)) ∈ Mnd) |
51 | 50 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (mulGrp‘(1o mPoly
𝑅)) ∈
Mnd) |
52 | 26 | a1i 11 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∅ ∈ V) |
53 | | ply1coe.e |
. . . . . . . . . . . 12
⊢ ↑ =
(.g‘𝑀) |
54 | 20, 10 | mgpbas 19641 |
. . . . . . . . . . . . 13
⊢ 𝐵 =
(Base‘(mulGrp‘(1o mPoly 𝑅))) |
55 | 54 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘(1o
mPoly 𝑅)))) |
56 | | ply1coe.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (mulGrp‘𝑃) |
57 | 56, 9 | mgpbas 19641 |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑀) |
58 | 57 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 = (Base‘𝑀)) |
59 | | ssv 3941 |
. . . . . . . . . . . . 13
⊢ 𝐵 ⊆ V |
60 | 59 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 ⊆ V) |
61 | | ovexd 7290 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) ∈ V) |
62 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑃) = (.r‘𝑃) |
63 | 7, 1, 62 | ply1mulr 21308 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝑃) = (.r‘(1o
mPoly 𝑅)) |
64 | 20, 63 | mgpplusg 19639 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) =
(+g‘(mulGrp‘(1o mPoly 𝑅))) |
65 | 56, 62 | mgpplusg 19639 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) = (+g‘𝑀) |
66 | 64, 65 | eqtr3i 2768 |
. . . . . . . . . . . . . 14
⊢
(+g‘(mulGrp‘(1o mPoly 𝑅))) = (+g‘𝑀) |
67 | 66 | oveqi 7268 |
. . . . . . . . . . . . 13
⊢ (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) = (𝑎(+g‘𝑀)𝑏) |
68 | 67 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) = (𝑎(+g‘𝑀)𝑏)) |
69 | 21, 53, 55, 58, 60, 61, 68 | mulgpropd 18660 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) →
(.g‘(mulGrp‘(1o mPoly 𝑅))) = ↑ ) |
70 | 69 | oveqd 7272 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
71 | 70 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
72 | 7 | ply1ring 21329 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
73 | 56 | ringmgp 19704 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Ring → 𝑀 ∈ Mnd) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
75 | 74 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑀 ∈ Mnd) |
76 | | elmapi 8595 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (ℕ0
↑m 1o) → 𝑎:1o⟶ℕ0) |
77 | | 0lt1o 8296 |
. . . . . . . . . . . 12
⊢ ∅
∈ 1o |
78 | | ffvelrn 6941 |
. . . . . . . . . . . 12
⊢ ((𝑎:1o⟶ℕ0
∧ ∅ ∈ 1o) → (𝑎‘∅) ∈
ℕ0) |
79 | 76, 77, 78 | sylancl 585 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (ℕ0
↑m 1o) → (𝑎‘∅) ∈
ℕ0) |
80 | 79 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑎‘∅) ∈
ℕ0) |
81 | | ply1coe.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (var1‘𝑅) |
82 | 81, 7, 9 | vr1cl 21298 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
83 | 82 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑋 ∈ 𝐵) |
84 | 57, 53 | mulgnn0cl 18635 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Mnd ∧ (𝑎‘∅) ∈
ℕ0 ∧ 𝑋
∈ 𝐵) → ((𝑎‘∅) ↑ 𝑋) ∈ 𝐵) |
85 | 75, 80, 83, 84 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅) ↑ 𝑋) ∈ 𝐵) |
86 | 71, 85 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) ∈ 𝐵) |
87 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ → (𝑎‘𝑐) = (𝑎‘∅)) |
88 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑐 = ∅ →
((1o mVar 𝑅)‘𝑐) = ((1o mVar 𝑅)‘∅)) |
89 | 81 | vr1val 21273 |
. . . . . . . . . . 11
⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
90 | 88, 89 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ →
((1o mVar 𝑅)‘𝑐) = 𝑋) |
91 | 87, 90 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑐 = ∅ → ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
92 | 54, 91 | gsumsn 19470 |
. . . . . . . 8
⊢
(((mulGrp‘(1o mPoly 𝑅)) ∈ Mnd ∧ ∅ ∈ V ∧
((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) ∈ 𝐵)
→ ((mulGrp‘(1o mPoly 𝑅))
Σg (𝑐 ∈ {∅}
↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
93 | 51, 52, 86, 92 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
94 | 46, 93 | eqtrid 2790 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ 1o ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
95 | 44, 94, 71 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))) = ((𝑎‘∅) ↑ 𝑋)) |
96 | 18, 95 | oveq12d 7273 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅)))) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))) |
97 | 96 | mpteq2dva 5170 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))))) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) |
98 | 97 | oveq2d 7271 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅)))))) = ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))))) |
99 | | nn0ex 12169 |
. . . . . 6
⊢
ℕ0 ∈ V |
100 | 99 | mptex 7081 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∈ V |
101 | 100 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∈ V) |
102 | 7 | fvexi 6770 |
. . . . 5
⊢ 𝑃 ∈ V |
103 | 102 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝑃 ∈ V) |
104 | | ovexd 7290 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ V) |
105 | 9, 10 | eqtr3i 2768 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘(1o mPoly 𝑅)) |
106 | 105 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (Base‘𝑃) = (Base‘(1o mPoly 𝑅))) |
107 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑃) = (+g‘𝑃) |
108 | 7, 1, 107 | ply1plusg 21306 |
. . . . 5
⊢
(+g‘𝑃) = (+g‘(1o
mPoly 𝑅)) |
109 | 108 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (+g‘𝑃) =
(+g‘(1o mPoly 𝑅))) |
110 | 101, 103,
104, 106, 109 | gsumpropd 18277 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) = ((1o mPoly 𝑅) Σg
(𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |
111 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
112 | 1, 7, 111 | ply1mpl0 21336 |
. . . 4
⊢
(0g‘𝑃) = (0g‘(1o
mPoly 𝑅)) |
113 | 1 | mpllmod 21133 |
. . . . . 6
⊢
((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly
𝑅) ∈
LMod) |
114 | 5, 13, 113 | sylancr 586 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ LMod) |
115 | | lmodcmn 20086 |
. . . . 5
⊢
((1o mPoly 𝑅) ∈ LMod → (1o mPoly
𝑅) ∈
CMnd) |
116 | 114, 115 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ CMnd) |
117 | 99 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ℕ0 ∈
V) |
118 | 7 | ply1lmod 21333 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
119 | 118 | ad2antrr 722 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod) |
120 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
121 | 16, 9, 7, 120 | coe1f 21292 |
. . . . . . . . 9
⊢ (𝐾 ∈ 𝐵 → 𝐴:ℕ0⟶(Base‘𝑅)) |
122 | 121 | adantl 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐴:ℕ0⟶(Base‘𝑅)) |
123 | 122 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ (Base‘𝑅)) |
124 | 7 | ply1sca 21334 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
125 | 124 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(Scalar‘𝑃) = 𝑅) |
126 | 125 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(Scalar‘𝑃) = 𝑅) |
127 | 126 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
128 | 123, 127 | eleqtrrd 2842 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ (Base‘(Scalar‘𝑃))) |
129 | 74 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd) |
130 | | simpr 484 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
131 | 82 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
132 | 57, 53 | mulgnn0cl 18635 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ 𝑘 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑘 ↑ 𝑋) ∈ 𝐵) |
133 | 129, 130,
131, 132 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐵) |
134 | | eqid 2738 |
. . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
135 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
136 | 9, 134, 11, 135 | lmodvscl 20055 |
. . . . . 6
⊢ ((𝑃 ∈ LMod ∧ (𝐴‘𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 ↑ 𝑋) ∈ 𝐵) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐵) |
137 | 119, 128,
133, 136 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐵) |
138 | 137 | fmpttd 6971 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))):ℕ0⟶𝐵) |
139 | 7, 81, 9, 11, 56, 53, 16 | ply1coefsupp 21376 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) |
140 | | eqid 2738 |
. . . . . 6
⊢ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) |
141 | 40, 99, 26, 140 | mapsnf1o2 8640 |
. . . . 5
⊢ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0 |
142 | 141 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0) |
143 | 10, 112, 116, 117, 138, 139, 142 | gsumf1o 19432 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) = ((1o mPoly 𝑅) Σg
((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))))) |
144 | | eqidd 2739 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))) |
145 | | eqidd 2739 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) |
146 | | fveq2 6756 |
. . . . . 6
⊢ (𝑘 = (𝑎‘∅) → (𝐴‘𝑘) = (𝐴‘(𝑎‘∅))) |
147 | | oveq1 7262 |
. . . . . 6
⊢ (𝑘 = (𝑎‘∅) → (𝑘 ↑ 𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
148 | 146, 147 | oveq12d 7273 |
. . . . 5
⊢ (𝑘 = (𝑎‘∅) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))) |
149 | 80, 144, 145, 148 | fmptco 6983 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) |
150 | 149 | oveq2d 7271 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)))) = ((1o mPoly
𝑅)
Σg (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))))) |
151 | 110, 143,
150 | 3eqtrrd 2783 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |
152 | 15, 98, 151 | 3eqtrd 2782 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |