Step | Hyp | Ref
| Expression |
1 | | eqid 2736 |
. . 3
⊢
(1o mPoly 𝑅) = (1o mPoly 𝑅) |
2 | | psr1baslem 21556 |
. . 3
⊢
(ℕ0 ↑m 1o) = {𝑑 ∈ (ℕ0
↑m 1o) ∣ (◡𝑑 “ ℕ) ∈
Fin} |
3 | | eqid 2736 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
4 | | eqid 2736 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
5 | | 1onn 8586 |
. . . 4
⊢
1o ∈ ω |
6 | 5 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 1o ∈
ω) |
7 | | ply1coe.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
8 | | eqid 2736 |
. . . 4
⊢
(PwSer1‘𝑅) = (PwSer1‘𝑅) |
9 | | ply1coe.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
10 | 7, 8, 9 | ply1bas 21566 |
. . 3
⊢ 𝐵 = (Base‘(1o
mPoly 𝑅)) |
11 | | ply1coe.n |
. . . 4
⊢ · = (
·𝑠 ‘𝑃) |
12 | 7, 1, 11 | ply1vsca 21597 |
. . 3
⊢ · = (
·𝑠 ‘(1o mPoly 𝑅)) |
13 | | simpl 483 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝑅 ∈ Ring) |
14 | | simpr 485 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 ∈ 𝐵) |
15 | 1, 2, 3, 4, 6, 10,
12, 13, 14 | mplcoe1 21438 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))))))) |
16 | | ply1coe.a |
. . . . . . 7
⊢ 𝐴 = (coe1‘𝐾) |
17 | 16 | fvcoe1 21578 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐵 ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝐾‘𝑎) = (𝐴‘(𝑎‘∅))) |
18 | 17 | adantll 712 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝐾‘𝑎) = (𝐴‘(𝑎‘∅))) |
19 | 5 | a1i 11 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 1o ∈
ω) |
20 | | eqid 2736 |
. . . . . . 7
⊢
(mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly
𝑅)) |
21 | | eqid 2736 |
. . . . . . 7
⊢
(.g‘(mulGrp‘(1o mPoly 𝑅))) =
(.g‘(mulGrp‘(1o mPoly 𝑅))) |
22 | | eqid 2736 |
. . . . . . 7
⊢
(1o mVar 𝑅) = (1o mVar 𝑅) |
23 | | simpll 765 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑅 ∈ Ring) |
24 | | simpr 485 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑎 ∈ (ℕ0
↑m 1o)) |
25 | | eqidd 2737 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
26 | | 0ex 5264 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
27 | | fveq2 6842 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ∅ →
((1o mVar 𝑅)‘𝑏) = ((1o mVar 𝑅)‘∅)) |
28 | 27 | oveq1d 7372 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ →
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
29 | 27 | oveq2d 7373 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ →
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
30 | 28, 29 | eqeq12d 2752 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ →
((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))
↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)))) |
31 | 26, 30 | ralsn 4642 |
. . . . . . . . . 10
⊢
(∀𝑏 ∈
{∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))
↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
32 | 25, 31 | sylibr 233 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
33 | | fveq2 6842 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ →
((1o mVar 𝑅)‘𝑥) = ((1o mVar 𝑅)‘∅)) |
34 | 33 | oveq2d 7373 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ →
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅))) |
35 | 33 | oveq1d 7372 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ →
(((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
36 | 34, 35 | eqeq12d 2752 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ →
((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))) |
37 | 36 | ralbidv 3174 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (∀𝑏 ∈ {∅}
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))) |
38 | 26, 37 | ralsn 4642 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{∅}∀𝑏 ∈
{∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
39 | 32, 38 | sylibr 233 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
40 | | df1o2 8419 |
. . . . . . . . 9
⊢
1o = {∅} |
41 | 40 | raleqi 3311 |
. . . . . . . . 9
⊢
(∀𝑏 ∈
1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
42 | 40, 41 | raleqbii 3315 |
. . . . . . . 8
⊢
(∀𝑥 ∈
1o ∀𝑏
∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
43 | 39, 42 | sylibr 233 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑥 ∈ 1o ∀𝑏 ∈ 1o
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
44 | 1, 2, 3, 4, 19, 20, 21, 22, 23, 24, 43 | mplcoe5 21441 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))) = ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ 1o ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))))) |
45 | 40 | mpteq1i 5201 |
. . . . . . . 8
⊢ (𝑐 ∈ 1o ↦
((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))) = (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))) |
46 | 45 | oveq2i 7368 |
. . . . . . 7
⊢
((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦
((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) |
47 | 1 | mplring 21424 |
. . . . . . . . . . 11
⊢
((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly
𝑅) ∈
Ring) |
48 | 5, 47 | mpan 688 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1o mPoly 𝑅)
∈ Ring) |
49 | 20 | ringmgp 19970 |
. . . . . . . . . 10
⊢
((1o mPoly 𝑅) ∈ Ring →
(mulGrp‘(1o mPoly 𝑅)) ∈ Mnd) |
50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(mulGrp‘(1o mPoly 𝑅)) ∈ Mnd) |
51 | 50 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (mulGrp‘(1o mPoly
𝑅)) ∈
Mnd) |
52 | 26 | a1i 11 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∅ ∈ V) |
53 | | ply1coe.e |
. . . . . . . . . . . 12
⊢ ↑ =
(.g‘𝑀) |
54 | 20, 10 | mgpbas 19902 |
. . . . . . . . . . . . 13
⊢ 𝐵 =
(Base‘(mulGrp‘(1o mPoly 𝑅))) |
55 | 54 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘(1o
mPoly 𝑅)))) |
56 | | ply1coe.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (mulGrp‘𝑃) |
57 | 56, 9 | mgpbas 19902 |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑀) |
58 | 57 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 = (Base‘𝑀)) |
59 | | ssv 3968 |
. . . . . . . . . . . . 13
⊢ 𝐵 ⊆ V |
60 | 59 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 ⊆ V) |
61 | | ovexd 7392 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) ∈ V) |
62 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑃) = (.r‘𝑃) |
63 | 7, 1, 62 | ply1mulr 21598 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝑃) = (.r‘(1o
mPoly 𝑅)) |
64 | 20, 63 | mgpplusg 19900 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) =
(+g‘(mulGrp‘(1o mPoly 𝑅))) |
65 | 56, 62 | mgpplusg 19900 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) = (+g‘𝑀) |
66 | 64, 65 | eqtr3i 2766 |
. . . . . . . . . . . . . 14
⊢
(+g‘(mulGrp‘(1o mPoly 𝑅))) = (+g‘𝑀) |
67 | 66 | oveqi 7370 |
. . . . . . . . . . . . 13
⊢ (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) = (𝑎(+g‘𝑀)𝑏) |
68 | 67 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) = (𝑎(+g‘𝑀)𝑏)) |
69 | 21, 53, 55, 58, 60, 61, 68 | mulgpropd 18918 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) →
(.g‘(mulGrp‘(1o mPoly 𝑅))) = ↑ ) |
70 | 69 | oveqd 7374 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
71 | 70 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
72 | 7 | ply1ring 21619 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
73 | 56 | ringmgp 19970 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Ring → 𝑀 ∈ Mnd) |
74 | 72, 73 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
75 | 74 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑀 ∈ Mnd) |
76 | | elmapi 8787 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (ℕ0
↑m 1o) → 𝑎:1o⟶ℕ0) |
77 | | 0lt1o 8450 |
. . . . . . . . . . . 12
⊢ ∅
∈ 1o |
78 | | ffvelcdm 7032 |
. . . . . . . . . . . 12
⊢ ((𝑎:1o⟶ℕ0
∧ ∅ ∈ 1o) → (𝑎‘∅) ∈
ℕ0) |
79 | 76, 77, 78 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (ℕ0
↑m 1o) → (𝑎‘∅) ∈
ℕ0) |
80 | 79 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑎‘∅) ∈
ℕ0) |
81 | | ply1coe.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (var1‘𝑅) |
82 | 81, 7, 9 | vr1cl 21588 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
83 | 82 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑋 ∈ 𝐵) |
84 | 57, 53, 75, 80, 83 | mulgnn0cld 18897 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅) ↑ 𝑋) ∈ 𝐵) |
85 | 71, 84 | eqeltrd 2838 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) ∈ 𝐵) |
86 | | fveq2 6842 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ → (𝑎‘𝑐) = (𝑎‘∅)) |
87 | | fveq2 6842 |
. . . . . . . . . . 11
⊢ (𝑐 = ∅ →
((1o mVar 𝑅)‘𝑐) = ((1o mVar 𝑅)‘∅)) |
88 | 81 | vr1val 21563 |
. . . . . . . . . . 11
⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
89 | 87, 88 | eqtr4di 2794 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ →
((1o mVar 𝑅)‘𝑐) = 𝑋) |
90 | 86, 89 | oveq12d 7375 |
. . . . . . . . 9
⊢ (𝑐 = ∅ → ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
91 | 54, 90 | gsumsn 19731 |
. . . . . . . 8
⊢
(((mulGrp‘(1o mPoly 𝑅)) ∈ Mnd ∧ ∅ ∈ V ∧
((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) ∈ 𝐵)
→ ((mulGrp‘(1o mPoly 𝑅))
Σg (𝑐 ∈ {∅}
↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
92 | 51, 52, 85, 91 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
93 | 46, 92 | eqtrid 2788 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ 1o ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
94 | 44, 93, 71 | 3eqtrd 2780 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))) = ((𝑎‘∅) ↑ 𝑋)) |
95 | 18, 94 | oveq12d 7375 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅)))) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))) |
96 | 95 | mpteq2dva 5205 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))))) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) |
97 | 96 | oveq2d 7373 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅)))))) = ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))))) |
98 | | nn0ex 12419 |
. . . . . 6
⊢
ℕ0 ∈ V |
99 | 98 | mptex 7173 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∈ V |
100 | 99 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∈ V) |
101 | 7 | fvexi 6856 |
. . . . 5
⊢ 𝑃 ∈ V |
102 | 101 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝑃 ∈ V) |
103 | | ovexd 7392 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ V) |
104 | 9, 10 | eqtr3i 2766 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘(1o mPoly 𝑅)) |
105 | 104 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (Base‘𝑃) = (Base‘(1o mPoly 𝑅))) |
106 | | eqid 2736 |
. . . . . 6
⊢
(+g‘𝑃) = (+g‘𝑃) |
107 | 7, 1, 106 | ply1plusg 21596 |
. . . . 5
⊢
(+g‘𝑃) = (+g‘(1o
mPoly 𝑅)) |
108 | 107 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (+g‘𝑃) =
(+g‘(1o mPoly 𝑅))) |
109 | 100, 102,
103, 105, 108 | gsumpropd 18533 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) = ((1o mPoly 𝑅) Σg
(𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |
110 | | eqid 2736 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
111 | 1, 7, 110 | ply1mpl0 21626 |
. . . 4
⊢
(0g‘𝑃) = (0g‘(1o
mPoly 𝑅)) |
112 | 1 | mpllmod 21423 |
. . . . . 6
⊢
((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly
𝑅) ∈
LMod) |
113 | 5, 13, 112 | sylancr 587 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ LMod) |
114 | | lmodcmn 20370 |
. . . . 5
⊢
((1o mPoly 𝑅) ∈ LMod → (1o mPoly
𝑅) ∈
CMnd) |
115 | 113, 114 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ CMnd) |
116 | 98 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ℕ0 ∈
V) |
117 | 7 | ply1lmod 21623 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
118 | 117 | ad2antrr 724 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod) |
119 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
120 | 16, 9, 7, 119 | coe1f 21582 |
. . . . . . . . 9
⊢ (𝐾 ∈ 𝐵 → 𝐴:ℕ0⟶(Base‘𝑅)) |
121 | 120 | adantl 482 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐴:ℕ0⟶(Base‘𝑅)) |
122 | 121 | ffvelcdmda 7035 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ (Base‘𝑅)) |
123 | 7 | ply1sca 21624 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
124 | 123 | eqcomd 2742 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(Scalar‘𝑃) = 𝑅) |
125 | 124 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(Scalar‘𝑃) = 𝑅) |
126 | 125 | fveq2d 6846 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
127 | 122, 126 | eleqtrrd 2841 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ (Base‘(Scalar‘𝑃))) |
128 | 74 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd) |
129 | | simpr 485 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
130 | 82 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
131 | 57, 53, 128, 129, 130 | mulgnn0cld 18897 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐵) |
132 | | eqid 2736 |
. . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
133 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
134 | 9, 132, 11, 133 | lmodvscl 20339 |
. . . . . 6
⊢ ((𝑃 ∈ LMod ∧ (𝐴‘𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 ↑ 𝑋) ∈ 𝐵) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐵) |
135 | 118, 127,
131, 134 | syl3anc 1371 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐵) |
136 | 135 | fmpttd 7063 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))):ℕ0⟶𝐵) |
137 | 7, 81, 9, 11, 56, 53, 16 | ply1coefsupp 21666 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) |
138 | | eqid 2736 |
. . . . . 6
⊢ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) |
139 | 40, 98, 26, 138 | mapsnf1o2 8832 |
. . . . 5
⊢ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0 |
140 | 139 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0) |
141 | 10, 111, 115, 116, 136, 137, 140 | gsumf1o 19693 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) = ((1o mPoly 𝑅) Σg
((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))))) |
142 | | eqidd 2737 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))) |
143 | | eqidd 2737 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) |
144 | | fveq2 6842 |
. . . . . 6
⊢ (𝑘 = (𝑎‘∅) → (𝐴‘𝑘) = (𝐴‘(𝑎‘∅))) |
145 | | oveq1 7364 |
. . . . . 6
⊢ (𝑘 = (𝑎‘∅) → (𝑘 ↑ 𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
146 | 144, 145 | oveq12d 7375 |
. . . . 5
⊢ (𝑘 = (𝑎‘∅) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))) |
147 | 80, 142, 143, 146 | fmptco 7075 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) |
148 | 147 | oveq2d 7373 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)))) = ((1o mPoly
𝑅)
Σg (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))))) |
149 | 109, 141,
148 | 3eqtrrd 2781 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |
150 | 15, 97, 149 | 3eqtrd 2780 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |