Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1coe Structured version   Visualization version   GIF version

Theorem ply1coe 20928
 Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
ply1coe.p 𝑃 = (Poly1𝑅)
ply1coe.x 𝑋 = (var1𝑅)
ply1coe.b 𝐵 = (Base‘𝑃)
ply1coe.n · = ( ·𝑠𝑃)
ply1coe.m 𝑀 = (mulGrp‘𝑃)
ply1coe.e = (.g𝑀)
ply1coe.a 𝐴 = (coe1𝐾)
Assertion
Ref Expression
ply1coe ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐾   𝑘,𝑋   ,𝑘   𝑅,𝑘   · ,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem ply1coe
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 psr1baslem 20817 . . 3 (ℕ0m 1o) = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑 “ ℕ) ∈ Fin}
3 eqid 2801 . . 3 (0g𝑅) = (0g𝑅)
4 eqid 2801 . . 3 (1r𝑅) = (1r𝑅)
5 1onn 8252 . . . 4 1o ∈ ω
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 1o ∈ ω)
7 ply1coe.p . . . 4 𝑃 = (Poly1𝑅)
8 eqid 2801 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
9 ply1coe.b . . . 4 𝐵 = (Base‘𝑃)
107, 8, 9ply1bas 20827 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
11 ply1coe.n . . . 4 · = ( ·𝑠𝑃)
127, 1, 11ply1vsca 20858 . . 3 · = ( ·𝑠 ‘(1o mPoly 𝑅))
13 simpl 486 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑅 ∈ Ring)
14 simpr 488 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾𝐵)
151, 2, 3, 4, 6, 10, 12, 13, 14mplcoe1 20708 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))))
16 ply1coe.a . . . . . . 7 𝐴 = (coe1𝐾)
1716fvcoe1 20839 . . . . . 6 ((𝐾𝐵𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
1817adantll 713 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
195a1i 11 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 1o ∈ ω)
20 eqid 2801 . . . . . . 7 (mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly 𝑅))
21 eqid 2801 . . . . . . 7 (.g‘(mulGrp‘(1o mPoly 𝑅))) = (.g‘(mulGrp‘(1o mPoly 𝑅)))
22 eqid 2801 . . . . . . 7 (1o mVar 𝑅) = (1o mVar 𝑅)
23 simpll 766 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑅 ∈ Ring)
24 simpr 488 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑎 ∈ (ℕ0m 1o))
25 eqidd 2802 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
26 0ex 5178 . . . . . . . . . . 11 ∅ ∈ V
27 fveq2 6649 . . . . . . . . . . . . 13 (𝑏 = ∅ → ((1o mVar 𝑅)‘𝑏) = ((1o mVar 𝑅)‘∅))
2827oveq1d 7154 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
2927oveq2d 7155 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3028, 29eqeq12d 2817 . . . . . . . . . . 11 (𝑏 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
3126, 30ralsn 4582 . . . . . . . . . 10 (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3225, 31sylibr 237 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
33 fveq2 6649 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((1o mVar 𝑅)‘𝑥) = ((1o mVar 𝑅)‘∅))
3433oveq2d 7155 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3533oveq1d 7154 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3634, 35eqeq12d 2817 . . . . . . . . . . 11 (𝑥 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3736ralbidv 3165 . . . . . . . . . 10 (𝑥 = ∅ → (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3826, 37ralsn 4582 . . . . . . . . 9 (∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3932, 38sylibr 237 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
40 df1o2 8103 . . . . . . . . 9 1o = {∅}
4140raleqi 3365 . . . . . . . . 9 (∀𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4240, 41raleqbii 3200 . . . . . . . 8 (∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4339, 42sylibr 237 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
441, 2, 3, 4, 19, 20, 21, 22, 23, 24, 43mplcoe5 20711 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))))
4540mpteq1i 5123 . . . . . . . 8 (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))) = (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))
4645oveq2i 7150 . . . . . . 7 ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))))
471mplring 20694 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ Ring)
485, 47mpan 689 . . . . . . . . . 10 (𝑅 ∈ Ring → (1o mPoly 𝑅) ∈ Ring)
4920ringmgp 19299 . . . . . . . . . 10 ((1o mPoly 𝑅) ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5150ad2antrr 725 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5226a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∅ ∈ V)
53 ply1coe.e . . . . . . . . . . . 12 = (.g𝑀)
5420, 10mgpbas 19241 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅)))
5554a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅))))
56 ply1coe.m . . . . . . . . . . . . . 14 𝑀 = (mulGrp‘𝑃)
5756, 9mgpbas 19241 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
5857a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘𝑀))
59 ssv 3942 . . . . . . . . . . . . 13 𝐵 ⊆ V
6059a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 ⊆ V)
61 ovexd 7174 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) ∈ V)
62 eqid 2801 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
637, 1, 62ply1mulr 20859 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r‘(1o mPoly 𝑅))
6420, 63mgpplusg 19239 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
6556, 62mgpplusg 19239 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝑀)
6664, 65eqtr3i 2826 . . . . . . . . . . . . . 14 (+g‘(mulGrp‘(1o mPoly 𝑅))) = (+g𝑀)
6766oveqi 7152 . . . . . . . . . . . . 13 (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏)
6867a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏))
6921, 53, 55, 58, 60, 61, 68mulgpropd 18264 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (.g‘(mulGrp‘(1o mPoly 𝑅))) = )
7069oveqd 7156 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
7170adantr 484 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
727ply1ring 20880 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
7356ringmgp 19299 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
7472, 73syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
7574ad2antrr 725 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑀 ∈ Mnd)
76 elmapi 8415 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m 1o) → 𝑎:1o⟶ℕ0)
77 0lt1o 8116 . . . . . . . . . . . 12 ∅ ∈ 1o
78 ffvelrn 6830 . . . . . . . . . . . 12 ((𝑎:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑎‘∅) ∈ ℕ0)
7976, 77, 78sylancl 589 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0m 1o) → (𝑎‘∅) ∈ ℕ0)
8079adantl 485 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑎‘∅) ∈ ℕ0)
81 ply1coe.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
8281, 7, 9vr1cl 20849 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑋𝐵)
8382ad2antrr 725 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑋𝐵)
8457, 53mulgnn0cl 18239 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑎‘∅) ∈ ℕ0𝑋𝐵) → ((𝑎‘∅) 𝑋) ∈ 𝐵)
8575, 80, 83, 84syl3anc 1368 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅) 𝑋) ∈ 𝐵)
8671, 85eqeltrd 2893 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵)
87 fveq2 6649 . . . . . . . . . 10 (𝑐 = ∅ → (𝑎𝑐) = (𝑎‘∅))
88 fveq2 6649 . . . . . . . . . . 11 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = ((1o mVar 𝑅)‘∅))
8981vr1val 20824 . . . . . . . . . . 11 𝑋 = ((1o mVar 𝑅)‘∅)
9088, 89eqtr4di 2854 . . . . . . . . . 10 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = 𝑋)
9187, 90oveq12d 7157 . . . . . . . . 9 (𝑐 = ∅ → ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9254, 91gsumsn 19070 . . . . . . . 8 (((mulGrp‘(1o mPoly 𝑅)) ∈ Mnd ∧ ∅ ∈ V ∧ ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9351, 52, 86, 92syl3anc 1368 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9446, 93syl5eq 2848 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9544, 94, 713eqtrd 2840 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((𝑎‘∅) 𝑋))
9618, 95oveq12d 7157 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
9796mpteq2dva 5128 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
9897oveq2d 7155 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
99 nn0ex 11895 . . . . . 6 0 ∈ V
10099mptex 6967 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V
101100a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V)
1027fvexi 6663 . . . . 5 𝑃 ∈ V
103102a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑃 ∈ V)
104 ovexd 7174 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ V)
1059, 10eqtr3i 2826 . . . . 5 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
106105a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (Base‘𝑃) = (Base‘(1o mPoly 𝑅)))
107 eqid 2801 . . . . . 6 (+g𝑃) = (+g𝑃)
1087, 1, 107ply1plusg 20857 . . . . 5 (+g𝑃) = (+g‘(1o mPoly 𝑅))
109108a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (+g𝑃) = (+g‘(1o mPoly 𝑅)))
110101, 103, 104, 106, 109gsumpropd 17883 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
111 eqid 2801 . . . . 5 (0g𝑃) = (0g𝑃)
1121, 7, 111ply1mpl0 20887 . . . 4 (0g𝑃) = (0g‘(1o mPoly 𝑅))
1131mpllmod 20693 . . . . . 6 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ LMod)
1145, 13, 113sylancr 590 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ LMod)
115 lmodcmn 19678 . . . . 5 ((1o mPoly 𝑅) ∈ LMod → (1o mPoly 𝑅) ∈ CMnd)
116114, 115syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ CMnd)
11799a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ℕ0 ∈ V)
1187ply1lmod 20884 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
119118ad2antrr 725 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
120 eqid 2801 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
12116, 9, 7, 120coe1f 20843 . . . . . . . . 9 (𝐾𝐵𝐴:ℕ0⟶(Base‘𝑅))
122121adantl 485 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐴:ℕ0⟶(Base‘𝑅))
123122ffvelrnda 6832 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑅))
1247ply1sca 20885 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
125124eqcomd 2807 . . . . . . . . 9 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
126125ad2antrr 725 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
127126fveq2d 6653 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
128123, 127eleqtrrd 2896 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)))
12974ad2antrr 725 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
130 simpr 488 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
13182ad2antrr 725 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
13257, 53mulgnn0cl 18239 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋𝐵) → (𝑘 𝑋) ∈ 𝐵)
133129, 130, 131, 132syl3anc 1368 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
134 eqid 2801 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
135 eqid 2801 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1369, 134, 11, 135lmodvscl 19647 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
137119, 128, 133, 136syl3anc 1368 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
138137fmpttd 6860 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))):ℕ0𝐵)
1397, 81, 9, 11, 56, 53, 16ply1coefsupp 20927 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) finSupp (0g𝑃))
140 eqid 2801 . . . . . 6 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))
14140, 99, 26, 140mapsnf1o2 8445 . . . . 5 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
142141a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0)
14310, 112, 116, 117, 138, 139, 142gsumf1o 19032 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))))
144 eqidd 2802 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))
145 eqidd 2802 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))))
146 fveq2 6649 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝐴𝑘) = (𝐴‘(𝑎‘∅)))
147 oveq1 7146 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝑘 𝑋) = ((𝑎‘∅) 𝑋))
148146, 147oveq12d 7157 . . . . 5 (𝑘 = (𝑎‘∅) → ((𝐴𝑘) · (𝑘 𝑋)) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
14980, 144, 145, 148fmptco 6872 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
150149oveq2d 7155 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
151110, 143, 1503eqtrrd 2841 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
15215, 98, 1513eqtrd 2840 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109  Vcvv 3444   ⊆ wss 3884  ∅c0 4246  ifcif 4428  {csn 4528   ↦ cmpt 5113   ∘ ccom 5527  ⟶wf 6324  –1-1-onto→wf1o 6327  ‘cfv 6328  (class class class)co 7139  ωcom 7564  1oc1o 8082   ↑m cmap 8393  ℕ0cn0 11889  Basecbs 16478  +gcplusg 16560  .rcmulr 16561  Scalarcsca 16563   ·𝑠 cvsca 16564  0gc0g 16708   Σg cgsu 16709  Mndcmnd 17906  .gcmg 18219  CMndccmn 18901  mulGrpcmgp 19235  1rcur 19247  Ringcrg 19293  LModclmod 19630   mVar cmvr 20593   mPoly cmpl 20594  PwSer1cps1 20807  var1cv1 20808  Poly1cpl1 20809  coe1cco1 20810 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-tset 16579  df-ple 16580  df-0g 16710  df-gsum 16711  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-srg 19252  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-psr 20597  df-mvr 20598  df-mpl 20599  df-opsr 20601  df-psr1 20812  df-vr1 20813  df-ply1 20814  df-coe1 20815 This theorem is referenced by:  eqcoe1ply1eq  20929  pmatcollpw1lem2  21383  mp2pm2mp  21419  plypf1  24812
 Copyright terms: Public domain W3C validator