MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1coe Structured version   Visualization version   GIF version

Theorem ply1coe 20466
Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
ply1coe.p 𝑃 = (Poly1𝑅)
ply1coe.x 𝑋 = (var1𝑅)
ply1coe.b 𝐵 = (Base‘𝑃)
ply1coe.n · = ( ·𝑠𝑃)
ply1coe.m 𝑀 = (mulGrp‘𝑃)
ply1coe.e = (.g𝑀)
ply1coe.a 𝐴 = (coe1𝐾)
Assertion
Ref Expression
ply1coe ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐾   𝑘,𝑋   ,𝑘   𝑅,𝑘   · ,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem ply1coe
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 psr1baslem 20355 . . 3 (ℕ0m 1o) = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑 “ ℕ) ∈ Fin}
3 eqid 2823 . . 3 (0g𝑅) = (0g𝑅)
4 eqid 2823 . . 3 (1r𝑅) = (1r𝑅)
5 1onn 8267 . . . 4 1o ∈ ω
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 1o ∈ ω)
7 ply1coe.p . . . 4 𝑃 = (Poly1𝑅)
8 eqid 2823 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
9 ply1coe.b . . . 4 𝐵 = (Base‘𝑃)
107, 8, 9ply1bas 20365 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
11 ply1coe.n . . . 4 · = ( ·𝑠𝑃)
127, 1, 11ply1vsca 20396 . . 3 · = ( ·𝑠 ‘(1o mPoly 𝑅))
13 simpl 485 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑅 ∈ Ring)
14 simpr 487 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾𝐵)
151, 2, 3, 4, 6, 10, 12, 13, 14mplcoe1 20248 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))))
16 ply1coe.a . . . . . . 7 𝐴 = (coe1𝐾)
1716fvcoe1 20377 . . . . . 6 ((𝐾𝐵𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
1817adantll 712 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
195a1i 11 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 1o ∈ ω)
20 eqid 2823 . . . . . . 7 (mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly 𝑅))
21 eqid 2823 . . . . . . 7 (.g‘(mulGrp‘(1o mPoly 𝑅))) = (.g‘(mulGrp‘(1o mPoly 𝑅)))
22 eqid 2823 . . . . . . 7 (1o mVar 𝑅) = (1o mVar 𝑅)
23 simpll 765 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑅 ∈ Ring)
24 simpr 487 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑎 ∈ (ℕ0m 1o))
25 eqidd 2824 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
26 0ex 5213 . . . . . . . . . . 11 ∅ ∈ V
27 fveq2 6672 . . . . . . . . . . . . 13 (𝑏 = ∅ → ((1o mVar 𝑅)‘𝑏) = ((1o mVar 𝑅)‘∅))
2827oveq1d 7173 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
2927oveq2d 7174 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3028, 29eqeq12d 2839 . . . . . . . . . . 11 (𝑏 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
3126, 30ralsn 4621 . . . . . . . . . 10 (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3225, 31sylibr 236 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
33 fveq2 6672 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((1o mVar 𝑅)‘𝑥) = ((1o mVar 𝑅)‘∅))
3433oveq2d 7174 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3533oveq1d 7173 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3634, 35eqeq12d 2839 . . . . . . . . . . 11 (𝑥 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3736ralbidv 3199 . . . . . . . . . 10 (𝑥 = ∅ → (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3826, 37ralsn 4621 . . . . . . . . 9 (∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3932, 38sylibr 236 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
40 df1o2 8118 . . . . . . . . 9 1o = {∅}
4140raleqi 3415 . . . . . . . . 9 (∀𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4240, 41raleqbii 3236 . . . . . . . 8 (∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4339, 42sylibr 236 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
441, 2, 3, 4, 19, 20, 21, 22, 23, 24, 43mplcoe5 20251 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))))
4540mpteq1i 5158 . . . . . . . 8 (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))) = (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))
4645oveq2i 7169 . . . . . . 7 ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))))
471mplring 20234 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ Ring)
485, 47mpan 688 . . . . . . . . . 10 (𝑅 ∈ Ring → (1o mPoly 𝑅) ∈ Ring)
4920ringmgp 19305 . . . . . . . . . 10 ((1o mPoly 𝑅) ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5150ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5226a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∅ ∈ V)
53 ply1coe.e . . . . . . . . . . . 12 = (.g𝑀)
5420, 10mgpbas 19247 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅)))
5554a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅))))
56 ply1coe.m . . . . . . . . . . . . . 14 𝑀 = (mulGrp‘𝑃)
5756, 9mgpbas 19247 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
5857a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘𝑀))
59 ssv 3993 . . . . . . . . . . . . 13 𝐵 ⊆ V
6059a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 ⊆ V)
61 ovexd 7193 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) ∈ V)
62 eqid 2823 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
637, 1, 62ply1mulr 20397 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r‘(1o mPoly 𝑅))
6420, 63mgpplusg 19245 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
6556, 62mgpplusg 19245 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝑀)
6664, 65eqtr3i 2848 . . . . . . . . . . . . . 14 (+g‘(mulGrp‘(1o mPoly 𝑅))) = (+g𝑀)
6766oveqi 7171 . . . . . . . . . . . . 13 (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏)
6867a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏))
6921, 53, 55, 58, 60, 61, 68mulgpropd 18271 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (.g‘(mulGrp‘(1o mPoly 𝑅))) = )
7069oveqd 7175 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
7170adantr 483 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
727ply1ring 20418 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
7356ringmgp 19305 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
7472, 73syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
7574ad2antrr 724 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑀 ∈ Mnd)
76 elmapi 8430 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m 1o) → 𝑎:1o⟶ℕ0)
77 0lt1o 8131 . . . . . . . . . . . 12 ∅ ∈ 1o
78 ffvelrn 6851 . . . . . . . . . . . 12 ((𝑎:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑎‘∅) ∈ ℕ0)
7976, 77, 78sylancl 588 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0m 1o) → (𝑎‘∅) ∈ ℕ0)
8079adantl 484 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑎‘∅) ∈ ℕ0)
81 ply1coe.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
8281, 7, 9vr1cl 20387 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑋𝐵)
8382ad2antrr 724 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑋𝐵)
8457, 53mulgnn0cl 18246 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑎‘∅) ∈ ℕ0𝑋𝐵) → ((𝑎‘∅) 𝑋) ∈ 𝐵)
8575, 80, 83, 84syl3anc 1367 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅) 𝑋) ∈ 𝐵)
8671, 85eqeltrd 2915 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵)
87 fveq2 6672 . . . . . . . . . 10 (𝑐 = ∅ → (𝑎𝑐) = (𝑎‘∅))
88 fveq2 6672 . . . . . . . . . . 11 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = ((1o mVar 𝑅)‘∅))
8981vr1val 20362 . . . . . . . . . . 11 𝑋 = ((1o mVar 𝑅)‘∅)
9088, 89syl6eqr 2876 . . . . . . . . . 10 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = 𝑋)
9187, 90oveq12d 7176 . . . . . . . . 9 (𝑐 = ∅ → ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9254, 91gsumsn 19076 . . . . . . . 8 (((mulGrp‘(1o mPoly 𝑅)) ∈ Mnd ∧ ∅ ∈ V ∧ ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9351, 52, 86, 92syl3anc 1367 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9446, 93syl5eq 2870 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9544, 94, 713eqtrd 2862 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((𝑎‘∅) 𝑋))
9618, 95oveq12d 7176 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
9796mpteq2dva 5163 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
9897oveq2d 7174 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
99 nn0ex 11906 . . . . . 6 0 ∈ V
10099mptex 6988 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V
101100a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V)
1027fvexi 6686 . . . . 5 𝑃 ∈ V
103102a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑃 ∈ V)
104 ovexd 7193 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ V)
1059, 10eqtr3i 2848 . . . . 5 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
106105a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (Base‘𝑃) = (Base‘(1o mPoly 𝑅)))
107 eqid 2823 . . . . . 6 (+g𝑃) = (+g𝑃)
1087, 1, 107ply1plusg 20395 . . . . 5 (+g𝑃) = (+g‘(1o mPoly 𝑅))
109108a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (+g𝑃) = (+g‘(1o mPoly 𝑅)))
110101, 103, 104, 106, 109gsumpropd 17890 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
111 eqid 2823 . . . . 5 (0g𝑃) = (0g𝑃)
1121, 7, 111ply1mpl0 20425 . . . 4 (0g𝑃) = (0g‘(1o mPoly 𝑅))
1131mpllmod 20233 . . . . . 6 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ LMod)
1145, 13, 113sylancr 589 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ LMod)
115 lmodcmn 19684 . . . . 5 ((1o mPoly 𝑅) ∈ LMod → (1o mPoly 𝑅) ∈ CMnd)
116114, 115syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ CMnd)
11799a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ℕ0 ∈ V)
1187ply1lmod 20422 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
119118ad2antrr 724 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
120 eqid 2823 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
12116, 9, 7, 120coe1f 20381 . . . . . . . . 9 (𝐾𝐵𝐴:ℕ0⟶(Base‘𝑅))
122121adantl 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐴:ℕ0⟶(Base‘𝑅))
123122ffvelrnda 6853 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑅))
1247ply1sca 20423 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
125124eqcomd 2829 . . . . . . . . 9 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
126125ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
127126fveq2d 6676 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
128123, 127eleqtrrd 2918 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)))
12974ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
130 simpr 487 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
13182ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
13257, 53mulgnn0cl 18246 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋𝐵) → (𝑘 𝑋) ∈ 𝐵)
133129, 130, 131, 132syl3anc 1367 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
134 eqid 2823 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
135 eqid 2823 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1369, 134, 11, 135lmodvscl 19653 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
137119, 128, 133, 136syl3anc 1367 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
138137fmpttd 6881 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))):ℕ0𝐵)
1397, 81, 9, 11, 56, 53, 16ply1coefsupp 20465 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) finSupp (0g𝑃))
140 eqid 2823 . . . . . 6 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))
14140, 99, 26, 140mapsnf1o2 8460 . . . . 5 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
142141a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0)
14310, 112, 116, 117, 138, 139, 142gsumf1o 19038 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))))
144 eqidd 2824 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))
145 eqidd 2824 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))))
146 fveq2 6672 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝐴𝑘) = (𝐴‘(𝑎‘∅)))
147 oveq1 7165 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝑘 𝑋) = ((𝑎‘∅) 𝑋))
148146, 147oveq12d 7176 . . . . 5 (𝑘 = (𝑎‘∅) → ((𝐴𝑘) · (𝑘 𝑋)) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
14980, 144, 145, 148fmptco 6893 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
150149oveq2d 7174 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
151110, 143, 1503eqtrrd 2863 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
15215, 98, 1513eqtrd 2862 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  wss 3938  c0 4293  ifcif 4469  {csn 4569  cmpt 5148  ccom 5561  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  ωcom 7582  1oc1o 8097  m cmap 8408  0cn0 11900  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715   Σg cgsu 16716  Mndcmnd 17913  .gcmg 18226  CMndccmn 18908  mulGrpcmgp 19241  1rcur 19253  Ringcrg 19299  LModclmod 19636   mVar cmvr 20134   mPoly cmpl 20135  PwSer1cps1 20345  var1cv1 20346  Poly1cpl1 20347  coe1cco1 20348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-srg 19258  df-ring 19301  df-subrg 19535  df-lmod 19638  df-lss 19706  df-psr 20138  df-mvr 20139  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-vr1 20351  df-ply1 20352  df-coe1 20353
This theorem is referenced by:  eqcoe1ply1eq  20467  pmatcollpw1lem2  21385  mp2pm2mp  21421  plypf1  24804
  Copyright terms: Public domain W3C validator