MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1coe Structured version   Visualization version   GIF version

Theorem ply1coe 22167
Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
ply1coe.p 𝑃 = (Poly1β€˜π‘…)
ply1coe.x 𝑋 = (var1β€˜π‘…)
ply1coe.b 𝐡 = (Baseβ€˜π‘ƒ)
ply1coe.n Β· = ( ·𝑠 β€˜π‘ƒ)
ply1coe.m 𝑀 = (mulGrpβ€˜π‘ƒ)
ply1coe.e ↑ = (.gβ€˜π‘€)
ply1coe.a 𝐴 = (coe1β€˜πΎ)
Assertion
Ref Expression
ply1coe ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝐾 = (𝑃 Ξ£g (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)))))
Distinct variable groups:   𝐴,π‘˜   𝐡,π‘˜   π‘˜,𝐾   π‘˜,𝑋   ↑ ,π‘˜   𝑅,π‘˜   Β· ,π‘˜   𝑃,π‘˜
Allowed substitution hint:   𝑀(π‘˜)

Proof of Theorem ply1coe
Dummy variables π‘Ž 𝑏 𝑐 π‘₯ 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 psr1baslem 22054 . . 3 (β„•0 ↑m 1o) = {𝑑 ∈ (β„•0 ↑m 1o) ∣ (◑𝑑 β€œ β„•) ∈ Fin}
3 eqid 2726 . . 3 (0gβ€˜π‘…) = (0gβ€˜π‘…)
4 eqid 2726 . . 3 (1rβ€˜π‘…) = (1rβ€˜π‘…)
5 1onn 8638 . . . 4 1o ∈ Ο‰
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 1o ∈ Ο‰)
7 ply1coe.p . . . 4 𝑃 = (Poly1β€˜π‘…)
8 eqid 2726 . . . 4 (PwSer1β€˜π‘…) = (PwSer1β€˜π‘…)
9 ply1coe.b . . . 4 𝐡 = (Baseβ€˜π‘ƒ)
107, 8, 9ply1bas 22064 . . 3 𝐡 = (Baseβ€˜(1o mPoly 𝑅))
11 ply1coe.n . . . 4 Β· = ( ·𝑠 β€˜π‘ƒ)
127, 1, 11ply1vsca 22093 . . 3 Β· = ( ·𝑠 β€˜(1o mPoly 𝑅))
13 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝑅 ∈ Ring)
14 simpr 484 . . 3 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝐾 ∈ 𝐡)
151, 2, 3, 4, 6, 10, 12, 13, 14mplcoe1 21929 . 2 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝐾 = ((1o mPoly 𝑅) Ξ£g (π‘Ž ∈ (β„•0 ↑m 1o) ↦ ((πΎβ€˜π‘Ž) Β· (𝑏 ∈ (β„•0 ↑m 1o) ↦ if(𝑏 = π‘Ž, (1rβ€˜π‘…), (0gβ€˜π‘…)))))))
16 ply1coe.a . . . . . . 7 𝐴 = (coe1β€˜πΎ)
1716fvcoe1 22076 . . . . . 6 ((𝐾 ∈ 𝐡 ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ (πΎβ€˜π‘Ž) = (π΄β€˜(π‘Žβ€˜βˆ…)))
1817adantll 711 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ (πΎβ€˜π‘Ž) = (π΄β€˜(π‘Žβ€˜βˆ…)))
195a1i 11 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ 1o ∈ Ο‰)
20 eqid 2726 . . . . . . 7 (mulGrpβ€˜(1o mPoly 𝑅)) = (mulGrpβ€˜(1o mPoly 𝑅))
21 eqid 2726 . . . . . . 7 (.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅))) = (.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))
22 eqid 2726 . . . . . . 7 (1o mVar 𝑅) = (1o mVar 𝑅)
23 simpll 764 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ 𝑅 ∈ Ring)
24 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ π‘Ž ∈ (β„•0 ↑m 1o))
25 eqidd 2727 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)))
26 0ex 5300 . . . . . . . . . . 11 βˆ… ∈ V
27 fveq2 6884 . . . . . . . . . . . . 13 (𝑏 = βˆ… β†’ ((1o mVar 𝑅)β€˜π‘) = ((1o mVar 𝑅)β€˜βˆ…))
2827oveq1d 7419 . . . . . . . . . . . 12 (𝑏 = βˆ… β†’ (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)))
2927oveq2d 7420 . . . . . . . . . . . 12 (𝑏 = βˆ… β†’ (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)))
3028, 29eqeq12d 2742 . . . . . . . . . . 11 (𝑏 = βˆ… β†’ ((((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) ↔ (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…))))
3126, 30ralsn 4680 . . . . . . . . . 10 (βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) ↔ (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)))
3225, 31sylibr 233 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))
33 fveq2 6884 . . . . . . . . . . . . 13 (π‘₯ = βˆ… β†’ ((1o mVar 𝑅)β€˜π‘₯) = ((1o mVar 𝑅)β€˜βˆ…))
3433oveq2d 7420 . . . . . . . . . . . 12 (π‘₯ = βˆ… β†’ (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)))
3533oveq1d 7419 . . . . . . . . . . . 12 (π‘₯ = βˆ… β†’ (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))
3634, 35eqeq12d 2742 . . . . . . . . . . 11 (π‘₯ = βˆ… β†’ ((((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) ↔ (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘))))
3736ralbidv 3171 . . . . . . . . . 10 (π‘₯ = βˆ… β†’ (βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) ↔ βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘))))
3826, 37ralsn 4680 . . . . . . . . 9 (βˆ€π‘₯ ∈ {βˆ…}βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) ↔ βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜βˆ…)) = (((1o mVar 𝑅)β€˜βˆ…)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))
3932, 38sylibr 233 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ βˆ€π‘₯ ∈ {βˆ…}βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))
40 df1o2 8471 . . . . . . . . 9 1o = {βˆ…}
4140raleqi 3317 . . . . . . . . 9 (βˆ€π‘ ∈ 1o (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) ↔ βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))
4240, 41raleqbii 3332 . . . . . . . 8 (βˆ€π‘₯ ∈ 1o βˆ€π‘ ∈ 1o (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) ↔ βˆ€π‘₯ ∈ {βˆ…}βˆ€π‘ ∈ {βˆ…} (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))
4339, 42sylibr 233 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ βˆ€π‘₯ ∈ 1o βˆ€π‘ ∈ 1o (((1o mVar 𝑅)β€˜π‘)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘₯)) = (((1o mVar 𝑅)β€˜π‘₯)(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))
441, 2, 3, 4, 19, 20, 21, 22, 23, 24, 43mplcoe5 21932 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ (𝑏 ∈ (β„•0 ↑m 1o) ↦ if(𝑏 = π‘Ž, (1rβ€˜π‘…), (0gβ€˜π‘…))) = ((mulGrpβ€˜(1o mPoly 𝑅)) Ξ£g (𝑐 ∈ 1o ↦ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))))
4540mpteq1i 5237 . . . . . . . 8 (𝑐 ∈ 1o ↦ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘))) = (𝑐 ∈ {βˆ…} ↦ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))
4645oveq2i 7415 . . . . . . 7 ((mulGrpβ€˜(1o mPoly 𝑅)) Ξ£g (𝑐 ∈ 1o ↦ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))) = ((mulGrpβ€˜(1o mPoly 𝑅)) Ξ£g (𝑐 ∈ {βˆ…} ↦ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘))))
471mplring 21915 . . . . . . . . . . 11 ((1o ∈ Ο‰ ∧ 𝑅 ∈ Ring) β†’ (1o mPoly 𝑅) ∈ Ring)
485, 47mpan 687 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ (1o mPoly 𝑅) ∈ Ring)
4920ringmgp 20141 . . . . . . . . . 10 ((1o mPoly 𝑅) ∈ Ring β†’ (mulGrpβ€˜(1o mPoly 𝑅)) ∈ Mnd)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ Ring β†’ (mulGrpβ€˜(1o mPoly 𝑅)) ∈ Mnd)
5150ad2antrr 723 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ (mulGrpβ€˜(1o mPoly 𝑅)) ∈ Mnd)
5226a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ βˆ… ∈ V)
53 ply1coe.e . . . . . . . . . . . 12 ↑ = (.gβ€˜π‘€)
5420, 10mgpbas 20042 . . . . . . . . . . . . 13 𝐡 = (Baseβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))
5554a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝐡 = (Baseβ€˜(mulGrpβ€˜(1o mPoly 𝑅))))
56 ply1coe.m . . . . . . . . . . . . . 14 𝑀 = (mulGrpβ€˜π‘ƒ)
5756, 9mgpbas 20042 . . . . . . . . . . . . 13 𝐡 = (Baseβ€˜π‘€)
5857a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝐡 = (Baseβ€˜π‘€))
59 ssv 4001 . . . . . . . . . . . . 13 𝐡 βŠ† V
6059a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝐡 βŠ† V)
61 ovexd 7439 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ (π‘Ž ∈ V ∧ 𝑏 ∈ V)) β†’ (π‘Ž(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑏) ∈ V)
62 eqid 2726 . . . . . . . . . . . . . . . . 17 (.rβ€˜π‘ƒ) = (.rβ€˜π‘ƒ)
637, 1, 62ply1mulr 22094 . . . . . . . . . . . . . . . 16 (.rβ€˜π‘ƒ) = (.rβ€˜(1o mPoly 𝑅))
6420, 63mgpplusg 20040 . . . . . . . . . . . . . . 15 (.rβ€˜π‘ƒ) = (+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))
6556, 62mgpplusg 20040 . . . . . . . . . . . . . . 15 (.rβ€˜π‘ƒ) = (+gβ€˜π‘€)
6664, 65eqtr3i 2756 . . . . . . . . . . . . . 14 (+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅))) = (+gβ€˜π‘€)
6766oveqi 7417 . . . . . . . . . . . . 13 (π‘Ž(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑏) = (π‘Ž(+gβ€˜π‘€)𝑏)
6867a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ (π‘Ž ∈ V ∧ 𝑏 ∈ V)) β†’ (π‘Ž(+gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑏) = (π‘Ž(+gβ€˜π‘€)𝑏))
6921, 53, 55, 58, 60, 61, 68mulgpropd 19040 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅))) = ↑ )
7069oveqd 7421 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ ((π‘Žβ€˜βˆ…)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑋) = ((π‘Žβ€˜βˆ…) ↑ 𝑋))
7170adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ ((π‘Žβ€˜βˆ…)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑋) = ((π‘Žβ€˜βˆ…) ↑ 𝑋))
727ply1ring 22116 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
7356ringmgp 20141 . . . . . . . . . . . 12 (𝑃 ∈ Ring β†’ 𝑀 ∈ Mnd)
7472, 73syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring β†’ 𝑀 ∈ Mnd)
7574ad2antrr 723 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ 𝑀 ∈ Mnd)
76 elmapi 8842 . . . . . . . . . . . 12 (π‘Ž ∈ (β„•0 ↑m 1o) β†’ π‘Ž:1oβŸΆβ„•0)
77 0lt1o 8502 . . . . . . . . . . . 12 βˆ… ∈ 1o
78 ffvelcdm 7076 . . . . . . . . . . . 12 ((π‘Ž:1oβŸΆβ„•0 ∧ βˆ… ∈ 1o) β†’ (π‘Žβ€˜βˆ…) ∈ β„•0)
7976, 77, 78sylancl 585 . . . . . . . . . . 11 (π‘Ž ∈ (β„•0 ↑m 1o) β†’ (π‘Žβ€˜βˆ…) ∈ β„•0)
8079adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ (π‘Žβ€˜βˆ…) ∈ β„•0)
81 ply1coe.x . . . . . . . . . . . 12 𝑋 = (var1β€˜π‘…)
8281, 7, 9vr1cl 22086 . . . . . . . . . . 11 (𝑅 ∈ Ring β†’ 𝑋 ∈ 𝐡)
8382ad2antrr 723 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ 𝑋 ∈ 𝐡)
8457, 53, 75, 80, 83mulgnn0cld 19019 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ ((π‘Žβ€˜βˆ…) ↑ 𝑋) ∈ 𝐡)
8571, 84eqeltrd 2827 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ ((π‘Žβ€˜βˆ…)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑋) ∈ 𝐡)
86 fveq2 6884 . . . . . . . . . 10 (𝑐 = βˆ… β†’ (π‘Žβ€˜π‘) = (π‘Žβ€˜βˆ…))
87 fveq2 6884 . . . . . . . . . . 11 (𝑐 = βˆ… β†’ ((1o mVar 𝑅)β€˜π‘) = ((1o mVar 𝑅)β€˜βˆ…))
8881vr1val 22061 . . . . . . . . . . 11 𝑋 = ((1o mVar 𝑅)β€˜βˆ…)
8987, 88eqtr4di 2784 . . . . . . . . . 10 (𝑐 = βˆ… β†’ ((1o mVar 𝑅)β€˜π‘) = 𝑋)
9086, 89oveq12d 7422 . . . . . . . . 9 (𝑐 = βˆ… β†’ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)) = ((π‘Žβ€˜βˆ…)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑋))
9154, 90gsumsn 19871 . . . . . . . 8 (((mulGrpβ€˜(1o mPoly 𝑅)) ∈ Mnd ∧ βˆ… ∈ V ∧ ((π‘Žβ€˜βˆ…)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑋) ∈ 𝐡) β†’ ((mulGrpβ€˜(1o mPoly 𝑅)) Ξ£g (𝑐 ∈ {βˆ…} ↦ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))) = ((π‘Žβ€˜βˆ…)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑋))
9251, 52, 85, 91syl3anc 1368 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ ((mulGrpβ€˜(1o mPoly 𝑅)) Ξ£g (𝑐 ∈ {βˆ…} ↦ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))) = ((π‘Žβ€˜βˆ…)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑋))
9346, 92eqtrid 2778 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ ((mulGrpβ€˜(1o mPoly 𝑅)) Ξ£g (𝑐 ∈ 1o ↦ ((π‘Žβ€˜π‘)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))((1o mVar 𝑅)β€˜π‘)))) = ((π‘Žβ€˜βˆ…)(.gβ€˜(mulGrpβ€˜(1o mPoly 𝑅)))𝑋))
9444, 93, 713eqtrd 2770 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ (𝑏 ∈ (β„•0 ↑m 1o) ↦ if(𝑏 = π‘Ž, (1rβ€˜π‘…), (0gβ€˜π‘…))) = ((π‘Žβ€˜βˆ…) ↑ 𝑋))
9518, 94oveq12d 7422 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘Ž ∈ (β„•0 ↑m 1o)) β†’ ((πΎβ€˜π‘Ž) Β· (𝑏 ∈ (β„•0 ↑m 1o) ↦ if(𝑏 = π‘Ž, (1rβ€˜π‘…), (0gβ€˜π‘…)))) = ((π΄β€˜(π‘Žβ€˜βˆ…)) Β· ((π‘Žβ€˜βˆ…) ↑ 𝑋)))
9695mpteq2dva 5241 . . 3 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (π‘Ž ∈ (β„•0 ↑m 1o) ↦ ((πΎβ€˜π‘Ž) Β· (𝑏 ∈ (β„•0 ↑m 1o) ↦ if(𝑏 = π‘Ž, (1rβ€˜π‘…), (0gβ€˜π‘…))))) = (π‘Ž ∈ (β„•0 ↑m 1o) ↦ ((π΄β€˜(π‘Žβ€˜βˆ…)) Β· ((π‘Žβ€˜βˆ…) ↑ 𝑋))))
9796oveq2d 7420 . 2 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ ((1o mPoly 𝑅) Ξ£g (π‘Ž ∈ (β„•0 ↑m 1o) ↦ ((πΎβ€˜π‘Ž) Β· (𝑏 ∈ (β„•0 ↑m 1o) ↦ if(𝑏 = π‘Ž, (1rβ€˜π‘…), (0gβ€˜π‘…)))))) = ((1o mPoly 𝑅) Ξ£g (π‘Ž ∈ (β„•0 ↑m 1o) ↦ ((π΄β€˜(π‘Žβ€˜βˆ…)) Β· ((π‘Žβ€˜βˆ…) ↑ 𝑋)))))
98 nn0ex 12479 . . . . . 6 β„•0 ∈ V
9998mptex 7219 . . . . 5 (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))) ∈ V
10099a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))) ∈ V)
1017fvexi 6898 . . . . 5 𝑃 ∈ V
102101a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝑃 ∈ V)
103 ovexd 7439 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (1o mPoly 𝑅) ∈ V)
1049, 10eqtr3i 2756 . . . . 5 (Baseβ€˜π‘ƒ) = (Baseβ€˜(1o mPoly 𝑅))
105104a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (Baseβ€˜π‘ƒ) = (Baseβ€˜(1o mPoly 𝑅)))
106 eqid 2726 . . . . . 6 (+gβ€˜π‘ƒ) = (+gβ€˜π‘ƒ)
1077, 1, 106ply1plusg 22092 . . . . 5 (+gβ€˜π‘ƒ) = (+gβ€˜(1o mPoly 𝑅))
108107a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (+gβ€˜π‘ƒ) = (+gβ€˜(1o mPoly 𝑅)))
109100, 102, 103, 105, 108gsumpropd 18608 . . 3 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (𝑃 Ξ£g (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)))) = ((1o mPoly 𝑅) Ξ£g (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)))))
110 eqid 2726 . . . . 5 (0gβ€˜π‘ƒ) = (0gβ€˜π‘ƒ)
1111, 7, 110ply1mpl0 22124 . . . 4 (0gβ€˜π‘ƒ) = (0gβ€˜(1o mPoly 𝑅))
1121mpllmod 21914 . . . . . 6 ((1o ∈ Ο‰ ∧ 𝑅 ∈ Ring) β†’ (1o mPoly 𝑅) ∈ LMod)
1135, 13, 112sylancr 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (1o mPoly 𝑅) ∈ LMod)
114 lmodcmn 20753 . . . . 5 ((1o mPoly 𝑅) ∈ LMod β†’ (1o mPoly 𝑅) ∈ CMnd)
115113, 114syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (1o mPoly 𝑅) ∈ CMnd)
11698a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ β„•0 ∈ V)
1177ply1lmod 22120 . . . . . . 7 (𝑅 ∈ Ring β†’ 𝑃 ∈ LMod)
118117ad2antrr 723 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ 𝑃 ∈ LMod)
119 eqid 2726 . . . . . . . . . 10 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
12016, 9, 7, 119coe1f 22080 . . . . . . . . 9 (𝐾 ∈ 𝐡 β†’ 𝐴:β„•0⟢(Baseβ€˜π‘…))
121120adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝐴:β„•0⟢(Baseβ€˜π‘…))
122121ffvelcdmda 7079 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ (π΄β€˜π‘˜) ∈ (Baseβ€˜π‘…))
1237ply1sca 22121 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ 𝑅 = (Scalarβ€˜π‘ƒ))
124123eqcomd 2732 . . . . . . . . 9 (𝑅 ∈ Ring β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
125124ad2antrr 723 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ (Scalarβ€˜π‘ƒ) = 𝑅)
126125fveq2d 6888 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ (Baseβ€˜(Scalarβ€˜π‘ƒ)) = (Baseβ€˜π‘…))
127122, 126eleqtrrd 2830 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ (π΄β€˜π‘˜) ∈ (Baseβ€˜(Scalarβ€˜π‘ƒ)))
12874ad2antrr 723 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ 𝑀 ∈ Mnd)
129 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ π‘˜ ∈ β„•0)
13082ad2antrr 723 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ 𝑋 ∈ 𝐡)
13157, 53, 128, 129, 130mulgnn0cld 19019 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ (π‘˜ ↑ 𝑋) ∈ 𝐡)
132 eqid 2726 . . . . . . 7 (Scalarβ€˜π‘ƒ) = (Scalarβ€˜π‘ƒ)
133 eqid 2726 . . . . . . 7 (Baseβ€˜(Scalarβ€˜π‘ƒ)) = (Baseβ€˜(Scalarβ€˜π‘ƒ))
1349, 132, 11, 133lmodvscl 20721 . . . . . 6 ((𝑃 ∈ LMod ∧ (π΄β€˜π‘˜) ∈ (Baseβ€˜(Scalarβ€˜π‘ƒ)) ∧ (π‘˜ ↑ 𝑋) ∈ 𝐡) β†’ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)) ∈ 𝐡)
135118, 127, 131, 134syl3anc 1368 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) ∧ π‘˜ ∈ β„•0) β†’ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)) ∈ 𝐡)
136135fmpttd 7109 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))):β„•0⟢𝐡)
1377, 81, 9, 11, 56, 53, 16ply1coefsupp 22166 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))) finSupp (0gβ€˜π‘ƒ))
138 eqid 2726 . . . . . 6 (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…)) = (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…))
13940, 98, 26, 138mapsnf1o2 8887 . . . . 5 (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…)):(β„•0 ↑m 1o)–1-1-ontoβ†’β„•0
140139a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…)):(β„•0 ↑m 1o)–1-1-ontoβ†’β„•0)
14110, 111, 115, 116, 136, 137, 140gsumf1o 19833 . . 3 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ ((1o mPoly 𝑅) Ξ£g (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)))) = ((1o mPoly 𝑅) Ξ£g ((π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))) ∘ (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…)))))
142 eqidd 2727 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…)) = (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…)))
143 eqidd 2727 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))) = (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))))
144 fveq2 6884 . . . . . 6 (π‘˜ = (π‘Žβ€˜βˆ…) β†’ (π΄β€˜π‘˜) = (π΄β€˜(π‘Žβ€˜βˆ…)))
145 oveq1 7411 . . . . . 6 (π‘˜ = (π‘Žβ€˜βˆ…) β†’ (π‘˜ ↑ 𝑋) = ((π‘Žβ€˜βˆ…) ↑ 𝑋))
146144, 145oveq12d 7422 . . . . 5 (π‘˜ = (π‘Žβ€˜βˆ…) β†’ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)) = ((π΄β€˜(π‘Žβ€˜βˆ…)) Β· ((π‘Žβ€˜βˆ…) ↑ 𝑋)))
14780, 142, 143, 146fmptco 7122 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ ((π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))) ∘ (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…))) = (π‘Ž ∈ (β„•0 ↑m 1o) ↦ ((π΄β€˜(π‘Žβ€˜βˆ…)) Β· ((π‘Žβ€˜βˆ…) ↑ 𝑋))))
148147oveq2d 7420 . . 3 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ ((1o mPoly 𝑅) Ξ£g ((π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋))) ∘ (π‘Ž ∈ (β„•0 ↑m 1o) ↦ (π‘Žβ€˜βˆ…)))) = ((1o mPoly 𝑅) Ξ£g (π‘Ž ∈ (β„•0 ↑m 1o) ↦ ((π΄β€˜(π‘Žβ€˜βˆ…)) Β· ((π‘Žβ€˜βˆ…) ↑ 𝑋)))))
149109, 141, 1483eqtrrd 2771 . 2 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ ((1o mPoly 𝑅) Ξ£g (π‘Ž ∈ (β„•0 ↑m 1o) ↦ ((π΄β€˜(π‘Žβ€˜βˆ…)) Β· ((π‘Žβ€˜βˆ…) ↑ 𝑋)))) = (𝑃 Ξ£g (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)))))
15015, 97, 1493eqtrd 2770 1 ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐡) β†’ 𝐾 = (𝑃 Ξ£g (π‘˜ ∈ β„•0 ↦ ((π΄β€˜π‘˜) Β· (π‘˜ ↑ 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  Vcvv 3468   βŠ† wss 3943  βˆ…c0 4317  ifcif 4523  {csn 4623   ↦ cmpt 5224   ∘ ccom 5673  βŸΆwf 6532  β€“1-1-ontoβ†’wf1o 6535  β€˜cfv 6536  (class class class)co 7404  Ο‰com 7851  1oc1o 8457   ↑m cmap 8819  β„•0cn0 12473  Basecbs 17150  +gcplusg 17203  .rcmulr 17204  Scalarcsca 17206   ·𝑠 cvsca 17207  0gc0g 17391   Ξ£g cgsu 17392  Mndcmnd 18664  .gcmg 18992  CMndccmn 19697  mulGrpcmgp 20036  1rcur 20083  Ringcrg 20135  LModclmod 20703   mVar cmvr 21794   mPoly cmpl 21795  PwSer1cps1 22044  var1cv1 22045  Poly1cpl1 22046  coe1cco1 22047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-fzo 13631  df-seq 13970  df-hash 14293  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-hom 17227  df-cco 17228  df-0g 17393  df-gsum 17394  df-prds 17399  df-pws 17401  df-mre 17536  df-mrc 17537  df-acs 17539  df-mgm 18570  df-sgrp 18649  df-mnd 18665  df-mhm 18710  df-submnd 18711  df-grp 18863  df-minusg 18864  df-sbg 18865  df-mulg 18993  df-subg 19047  df-ghm 19136  df-cntz 19230  df-cmn 19699  df-abl 19700  df-mgp 20037  df-rng 20055  df-ur 20084  df-srg 20089  df-ring 20137  df-subrng 20443  df-subrg 20468  df-lmod 20705  df-lss 20776  df-psr 21798  df-mvr 21799  df-mpl 21800  df-opsr 21802  df-psr1 22049  df-vr1 22050  df-ply1 22051  df-coe1 22052
This theorem is referenced by:  eqcoe1ply1eq  22168  pmatcollpw1lem2  22627  mp2pm2mp  22663  plypf1  26096  evls1fpws  33154  ply1degltdimlem  33224
  Copyright terms: Public domain W3C validator