Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . 3
⊢
(1o mPoly 𝑅) = (1o mPoly 𝑅) |
2 | | psr1baslem 22207 |
. . 3
⊢
(ℕ0 ↑m 1o) = {𝑑 ∈ (ℕ0
↑m 1o) ∣ (◡𝑑 “ ℕ) ∈
Fin} |
3 | | eqid 2740 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
4 | | eqid 2740 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
5 | | 1onn 8696 |
. . . 4
⊢
1o ∈ ω |
6 | 5 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 1o ∈
ω) |
7 | | ply1coe.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
8 | | ply1coe.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
9 | 7, 8 | ply1bas 22217 |
. . 3
⊢ 𝐵 = (Base‘(1o
mPoly 𝑅)) |
10 | | ply1coe.n |
. . . 4
⊢ · = (
·𝑠 ‘𝑃) |
11 | 7, 1, 10 | ply1vsca 22247 |
. . 3
⊢ · = (
·𝑠 ‘(1o mPoly 𝑅)) |
12 | | simpl 482 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝑅 ∈ Ring) |
13 | | simpr 484 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 ∈ 𝐵) |
14 | 1, 2, 3, 4, 6, 9, 11, 12, 13 | mplcoe1 22078 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))))))) |
15 | | ply1coe.a |
. . . . . . 7
⊢ 𝐴 = (coe1‘𝐾) |
16 | 15 | fvcoe1 22230 |
. . . . . 6
⊢ ((𝐾 ∈ 𝐵 ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝐾‘𝑎) = (𝐴‘(𝑎‘∅))) |
17 | 16 | adantll 713 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝐾‘𝑎) = (𝐴‘(𝑎‘∅))) |
18 | 5 | a1i 11 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 1o ∈
ω) |
19 | | eqid 2740 |
. . . . . . 7
⊢
(mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly
𝑅)) |
20 | | eqid 2740 |
. . . . . . 7
⊢
(.g‘(mulGrp‘(1o mPoly 𝑅))) =
(.g‘(mulGrp‘(1o mPoly 𝑅))) |
21 | | eqid 2740 |
. . . . . . 7
⊢
(1o mVar 𝑅) = (1o mVar 𝑅) |
22 | | simpll 766 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑅 ∈ Ring) |
23 | | simpr 484 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑎 ∈ (ℕ0
↑m 1o)) |
24 | | eqidd 2741 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
25 | | 0ex 5325 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
26 | | fveq2 6920 |
. . . . . . . . . . . . 13
⊢ (𝑏 = ∅ →
((1o mVar 𝑅)‘𝑏) = ((1o mVar 𝑅)‘∅)) |
27 | 26 | oveq1d 7463 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ →
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
28 | 26 | oveq2d 7464 |
. . . . . . . . . . . 12
⊢ (𝑏 = ∅ →
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
29 | 27, 28 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (𝑏 = ∅ →
((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))
↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)))) |
30 | 25, 29 | ralsn 4705 |
. . . . . . . . . 10
⊢
(∀𝑏 ∈
{∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))
↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘∅))) |
31 | 24, 30 | sylibr 234 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
32 | | fveq2 6920 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ →
((1o mVar 𝑅)‘𝑥) = ((1o mVar 𝑅)‘∅)) |
33 | 32 | oveq2d 7464 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ →
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅))) |
34 | 32 | oveq1d 7463 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ →
(((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
35 | 33, 34 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ →
((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))) |
36 | 35 | ralbidv 3184 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → (∀𝑏 ∈ {∅}
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))) |
37 | 25, 36 | ralsn 4705 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{∅}∀𝑏 ∈
{∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘∅)) =
(((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))) |
38 | 31, 37 | sylibr 234 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
39 | | df1o2 8529 |
. . . . . . . . 9
⊢
1o = {∅} |
40 | 39 | raleqi 3332 |
. . . . . . . . 9
⊢
(∀𝑏 ∈
1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
41 | 39, 40 | raleqbii 3352 |
. . . . . . . 8
⊢
(∀𝑥 ∈
1o ∀𝑏
∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏)) ↔ ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
42 | 38, 41 | sylibr 234 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∀𝑥 ∈ 1o ∀𝑏 ∈ 1o
(((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑏))) |
43 | 1, 2, 3, 4, 18, 19, 20, 21, 22, 23, 42 | mplcoe5 22081 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))) = ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ 1o ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))))) |
44 | 39 | mpteq1i 5262 |
. . . . . . . 8
⊢ (𝑐 ∈ 1o ↦
((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))) = (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐))) |
45 | 44 | oveq2i 7459 |
. . . . . . 7
⊢
((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦
((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) |
46 | 1 | mplring 22062 |
. . . . . . . . . . 11
⊢
((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly
𝑅) ∈
Ring) |
47 | 5, 46 | mpan 689 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1o mPoly 𝑅)
∈ Ring) |
48 | 19 | ringmgp 20266 |
. . . . . . . . . 10
⊢
((1o mPoly 𝑅) ∈ Ring →
(mulGrp‘(1o mPoly 𝑅)) ∈ Mnd) |
49 | 47, 48 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(mulGrp‘(1o mPoly 𝑅)) ∈ Mnd) |
50 | 49 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (mulGrp‘(1o mPoly
𝑅)) ∈
Mnd) |
51 | 25 | a1i 11 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ∅ ∈ V) |
52 | | ply1coe.e |
. . . . . . . . . . . 12
⊢ ↑ =
(.g‘𝑀) |
53 | 19, 9 | mgpbas 20167 |
. . . . . . . . . . . . 13
⊢ 𝐵 =
(Base‘(mulGrp‘(1o mPoly 𝑅))) |
54 | 53 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 = (Base‘(mulGrp‘(1o
mPoly 𝑅)))) |
55 | | ply1coe.m |
. . . . . . . . . . . . . 14
⊢ 𝑀 = (mulGrp‘𝑃) |
56 | 55, 8 | mgpbas 20167 |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑀) |
57 | 56 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 = (Base‘𝑀)) |
58 | | ssv 4033 |
. . . . . . . . . . . . 13
⊢ 𝐵 ⊆ V |
59 | 58 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐵 ⊆ V) |
60 | | ovexd 7483 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) ∈ V) |
61 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝑃) = (.r‘𝑃) |
62 | 7, 1, 61 | ply1mulr 22248 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝑃) = (.r‘(1o
mPoly 𝑅)) |
63 | 19, 62 | mgpplusg 20165 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) =
(+g‘(mulGrp‘(1o mPoly 𝑅))) |
64 | 55, 61 | mgpplusg 20165 |
. . . . . . . . . . . . . . 15
⊢
(.r‘𝑃) = (+g‘𝑀) |
65 | 63, 64 | eqtr3i 2770 |
. . . . . . . . . . . . . 14
⊢
(+g‘(mulGrp‘(1o mPoly 𝑅))) = (+g‘𝑀) |
66 | 65 | oveqi 7461 |
. . . . . . . . . . . . 13
⊢ (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) = (𝑎(+g‘𝑀)𝑏) |
67 | 66 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o
mPoly 𝑅)))𝑏) = (𝑎(+g‘𝑀)𝑏)) |
68 | 20, 52, 54, 57, 59, 60, 67 | mulgpropd 19156 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) →
(.g‘(mulGrp‘(1o mPoly 𝑅))) = ↑ ) |
69 | 68 | oveqd 7465 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
70 | 69 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
71 | 7 | ply1ring 22270 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
72 | 55 | ringmgp 20266 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Ring → 𝑀 ∈ Mnd) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
74 | 73 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑀 ∈ Mnd) |
75 | | elmapi 8907 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (ℕ0
↑m 1o) → 𝑎:1o⟶ℕ0) |
76 | | 0lt1o 8560 |
. . . . . . . . . . . 12
⊢ ∅
∈ 1o |
77 | | ffvelcdm 7115 |
. . . . . . . . . . . 12
⊢ ((𝑎:1o⟶ℕ0
∧ ∅ ∈ 1o) → (𝑎‘∅) ∈
ℕ0) |
78 | 75, 76, 77 | sylancl 585 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ (ℕ0
↑m 1o) → (𝑎‘∅) ∈
ℕ0) |
79 | 78 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑎‘∅) ∈
ℕ0) |
80 | | ply1coe.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (var1‘𝑅) |
81 | 80, 7, 8 | vr1cl 22240 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
82 | 81 | ad2antrr 725 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → 𝑋 ∈ 𝐵) |
83 | 56, 52, 74, 79, 82 | mulgnn0cld 19135 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅) ↑ 𝑋) ∈ 𝐵) |
84 | 70, 83 | eqeltrd 2844 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) ∈ 𝐵) |
85 | | fveq2 6920 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ → (𝑎‘𝑐) = (𝑎‘∅)) |
86 | | fveq2 6920 |
. . . . . . . . . . 11
⊢ (𝑐 = ∅ →
((1o mVar 𝑅)‘𝑐) = ((1o mVar 𝑅)‘∅)) |
87 | 80 | vr1val 22214 |
. . . . . . . . . . 11
⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
88 | 86, 87 | eqtr4di 2798 |
. . . . . . . . . 10
⊢ (𝑐 = ∅ →
((1o mVar 𝑅)‘𝑐) = 𝑋) |
89 | 85, 88 | oveq12d 7466 |
. . . . . . . . 9
⊢ (𝑐 = ∅ → ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
90 | 53, 89 | gsumsn 19996 |
. . . . . . . 8
⊢
(((mulGrp‘(1o mPoly 𝑅)) ∈ Mnd ∧ ∅ ∈ V ∧
((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋) ∈ 𝐵)
→ ((mulGrp‘(1o mPoly 𝑅))
Σg (𝑐 ∈ {∅}
↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
91 | 50, 51, 84, 90 | syl3anc 1371 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ {∅} ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
92 | 45, 91 | eqtrid 2792 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((mulGrp‘(1o mPoly
𝑅))
Σg (𝑐 ∈ 1o ↦ ((𝑎‘𝑐)(.g‘(mulGrp‘(1o
mPoly 𝑅)))((1o mVar
𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o
mPoly 𝑅)))𝑋)) |
93 | 43, 92, 70 | 3eqtrd 2784 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))) = ((𝑎‘∅) ↑ 𝑋)) |
94 | 17, 93 | oveq12d 7466 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑎 ∈ (ℕ0
↑m 1o)) → ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅)))) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))) |
95 | 94 | mpteq2dva 5266 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅))))) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) |
96 | 95 | oveq2d 7464 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐾‘𝑎) · (𝑏 ∈ (ℕ0
↑m 1o) ↦ if(𝑏 = 𝑎, (1r‘𝑅), (0g‘𝑅)))))) = ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))))) |
97 | | nn0ex 12559 |
. . . . . 6
⊢
ℕ0 ∈ V |
98 | 97 | mptex 7260 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∈ V |
99 | 98 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∈ V) |
100 | 7 | fvexi 6934 |
. . . . 5
⊢ 𝑃 ∈ V |
101 | 100 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝑃 ∈ V) |
102 | | ovexd 7483 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ V) |
103 | 8, 9 | eqtr3i 2770 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘(1o mPoly 𝑅)) |
104 | 103 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (Base‘𝑃) = (Base‘(1o mPoly 𝑅))) |
105 | | eqid 2740 |
. . . . . 6
⊢
(+g‘𝑃) = (+g‘𝑃) |
106 | 7, 1, 105 | ply1plusg 22246 |
. . . . 5
⊢
(+g‘𝑃) = (+g‘(1o
mPoly 𝑅)) |
107 | 106 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (+g‘𝑃) =
(+g‘(1o mPoly 𝑅))) |
108 | 99, 101, 102, 104, 107 | gsumpropd 18716 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) = ((1o mPoly 𝑅) Σg
(𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |
109 | | eqid 2740 |
. . . . 5
⊢
(0g‘𝑃) = (0g‘𝑃) |
110 | 1, 7, 109 | ply1mpl0 22279 |
. . . 4
⊢
(0g‘𝑃) = (0g‘(1o
mPoly 𝑅)) |
111 | 1 | mpllmod 22061 |
. . . . . 6
⊢
((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly
𝑅) ∈
LMod) |
112 | 5, 12, 111 | sylancr 586 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ LMod) |
113 | | lmodcmn 20930 |
. . . . 5
⊢
((1o mPoly 𝑅) ∈ LMod → (1o mPoly
𝑅) ∈
CMnd) |
114 | 112, 113 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (1o mPoly 𝑅) ∈ CMnd) |
115 | 97 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ℕ0 ∈
V) |
116 | 7 | ply1lmod 22274 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
117 | 116 | ad2antrr 725 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod) |
118 | | eqid 2740 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
119 | 15, 8, 7, 118 | coe1f 22234 |
. . . . . . . . 9
⊢ (𝐾 ∈ 𝐵 → 𝐴:ℕ0⟶(Base‘𝑅)) |
120 | 119 | adantl 481 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐴:ℕ0⟶(Base‘𝑅)) |
121 | 120 | ffvelcdmda 7118 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ (Base‘𝑅)) |
122 | 7 | ply1sca 22275 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
123 | 122 | eqcomd 2746 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(Scalar‘𝑃) = 𝑅) |
124 | 123 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(Scalar‘𝑃) = 𝑅) |
125 | 124 | fveq2d 6924 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(Base‘(Scalar‘𝑃)) = (Base‘𝑅)) |
126 | 121, 125 | eleqtrrd 2847 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ (Base‘(Scalar‘𝑃))) |
127 | 73 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd) |
128 | | simpr 484 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
129 | 81 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
130 | 56, 52, 127, 128, 129 | mulgnn0cld 19135 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 ↑ 𝑋) ∈ 𝐵) |
131 | | eqid 2740 |
. . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
132 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
133 | 8, 131, 10, 132 | lmodvscl 20898 |
. . . . . 6
⊢ ((𝑃 ∈ LMod ∧ (𝐴‘𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 ↑ 𝑋) ∈ 𝐵) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐵) |
134 | 117, 126,
130, 133 | syl3anc 1371 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) ∈ 𝐵) |
135 | 134 | fmpttd 7149 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))):ℕ0⟶𝐵) |
136 | 7, 80, 8, 10, 55, 52, 15 | ply1coefsupp 22322 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) |
137 | | eqid 2740 |
. . . . . 6
⊢ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) |
138 | 39, 97, 25, 137 | mapsnf1o2 8952 |
. . . . 5
⊢ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0 |
139 | 138 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0) |
140 | 9, 110, 114, 115, 135, 136, 139 | gsumf1o 19958 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) = ((1o mPoly 𝑅) Σg
((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))))) |
141 | | eqidd 2741 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))) |
142 | | eqidd 2741 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)))) |
143 | | fveq2 6920 |
. . . . . 6
⊢ (𝑘 = (𝑎‘∅) → (𝐴‘𝑘) = (𝐴‘(𝑎‘∅))) |
144 | | oveq1 7455 |
. . . . . 6
⊢ (𝑘 = (𝑎‘∅) → (𝑘 ↑ 𝑋) = ((𝑎‘∅) ↑ 𝑋)) |
145 | 143, 144 | oveq12d 7466 |
. . . . 5
⊢ (𝑘 = (𝑎‘∅) → ((𝐴‘𝑘) · (𝑘 ↑ 𝑋)) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))) |
146 | 79, 141, 142, 145 | fmptco 7163 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅))) = (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) |
147 | 146 | oveq2d 7464 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) ∘ (𝑎 ∈ (ℕ0
↑m 1o) ↦ (𝑎‘∅)))) = ((1o mPoly
𝑅)
Σg (𝑎 ∈ (ℕ0
↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋))))) |
148 | 108, 140,
147 | 3eqtrrd 2785 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → ((1o mPoly 𝑅) Σg
(𝑎 ∈
(ℕ0 ↑m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) ↑ 𝑋)))) = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |
149 | 14, 96, 148 | 3eqtrd 2784 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) |