MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1coe Structured version   Visualization version   GIF version

Theorem ply1coe 21377
Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
ply1coe.p 𝑃 = (Poly1𝑅)
ply1coe.x 𝑋 = (var1𝑅)
ply1coe.b 𝐵 = (Base‘𝑃)
ply1coe.n · = ( ·𝑠𝑃)
ply1coe.m 𝑀 = (mulGrp‘𝑃)
ply1coe.e = (.g𝑀)
ply1coe.a 𝐴 = (coe1𝐾)
Assertion
Ref Expression
ply1coe ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐾   𝑘,𝑋   ,𝑘   𝑅,𝑘   · ,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem ply1coe
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 psr1baslem 21266 . . 3 (ℕ0m 1o) = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑 “ ℕ) ∈ Fin}
3 eqid 2738 . . 3 (0g𝑅) = (0g𝑅)
4 eqid 2738 . . 3 (1r𝑅) = (1r𝑅)
5 1onn 8432 . . . 4 1o ∈ ω
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 1o ∈ ω)
7 ply1coe.p . . . 4 𝑃 = (Poly1𝑅)
8 eqid 2738 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
9 ply1coe.b . . . 4 𝐵 = (Base‘𝑃)
107, 8, 9ply1bas 21276 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
11 ply1coe.n . . . 4 · = ( ·𝑠𝑃)
127, 1, 11ply1vsca 21307 . . 3 · = ( ·𝑠 ‘(1o mPoly 𝑅))
13 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑅 ∈ Ring)
14 simpr 484 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾𝐵)
151, 2, 3, 4, 6, 10, 12, 13, 14mplcoe1 21148 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))))
16 ply1coe.a . . . . . . 7 𝐴 = (coe1𝐾)
1716fvcoe1 21288 . . . . . 6 ((𝐾𝐵𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
1817adantll 710 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
195a1i 11 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 1o ∈ ω)
20 eqid 2738 . . . . . . 7 (mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly 𝑅))
21 eqid 2738 . . . . . . 7 (.g‘(mulGrp‘(1o mPoly 𝑅))) = (.g‘(mulGrp‘(1o mPoly 𝑅)))
22 eqid 2738 . . . . . . 7 (1o mVar 𝑅) = (1o mVar 𝑅)
23 simpll 763 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑅 ∈ Ring)
24 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑎 ∈ (ℕ0m 1o))
25 eqidd 2739 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
26 0ex 5226 . . . . . . . . . . 11 ∅ ∈ V
27 fveq2 6756 . . . . . . . . . . . . 13 (𝑏 = ∅ → ((1o mVar 𝑅)‘𝑏) = ((1o mVar 𝑅)‘∅))
2827oveq1d 7270 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
2927oveq2d 7271 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3028, 29eqeq12d 2754 . . . . . . . . . . 11 (𝑏 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
3126, 30ralsn 4614 . . . . . . . . . 10 (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3225, 31sylibr 233 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
33 fveq2 6756 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((1o mVar 𝑅)‘𝑥) = ((1o mVar 𝑅)‘∅))
3433oveq2d 7271 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3533oveq1d 7270 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3634, 35eqeq12d 2754 . . . . . . . . . . 11 (𝑥 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3736ralbidv 3120 . . . . . . . . . 10 (𝑥 = ∅ → (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3826, 37ralsn 4614 . . . . . . . . 9 (∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3932, 38sylibr 233 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
40 df1o2 8279 . . . . . . . . 9 1o = {∅}
4140raleqi 3337 . . . . . . . . 9 (∀𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4240, 41raleqbii 3160 . . . . . . . 8 (∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4339, 42sylibr 233 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
441, 2, 3, 4, 19, 20, 21, 22, 23, 24, 43mplcoe5 21151 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))))
4540mpteq1i 5166 . . . . . . . 8 (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))) = (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))
4645oveq2i 7266 . . . . . . 7 ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))))
471mplring 21134 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ Ring)
485, 47mpan 686 . . . . . . . . . 10 (𝑅 ∈ Ring → (1o mPoly 𝑅) ∈ Ring)
4920ringmgp 19704 . . . . . . . . . 10 ((1o mPoly 𝑅) ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5150ad2antrr 722 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5226a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∅ ∈ V)
53 ply1coe.e . . . . . . . . . . . 12 = (.g𝑀)
5420, 10mgpbas 19641 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅)))
5554a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅))))
56 ply1coe.m . . . . . . . . . . . . . 14 𝑀 = (mulGrp‘𝑃)
5756, 9mgpbas 19641 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
5857a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘𝑀))
59 ssv 3941 . . . . . . . . . . . . 13 𝐵 ⊆ V
6059a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 ⊆ V)
61 ovexd 7290 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) ∈ V)
62 eqid 2738 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
637, 1, 62ply1mulr 21308 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r‘(1o mPoly 𝑅))
6420, 63mgpplusg 19639 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
6556, 62mgpplusg 19639 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝑀)
6664, 65eqtr3i 2768 . . . . . . . . . . . . . 14 (+g‘(mulGrp‘(1o mPoly 𝑅))) = (+g𝑀)
6766oveqi 7268 . . . . . . . . . . . . 13 (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏)
6867a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏))
6921, 53, 55, 58, 60, 61, 68mulgpropd 18660 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (.g‘(mulGrp‘(1o mPoly 𝑅))) = )
7069oveqd 7272 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
7170adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
727ply1ring 21329 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
7356ringmgp 19704 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
7472, 73syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
7574ad2antrr 722 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑀 ∈ Mnd)
76 elmapi 8595 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m 1o) → 𝑎:1o⟶ℕ0)
77 0lt1o 8296 . . . . . . . . . . . 12 ∅ ∈ 1o
78 ffvelrn 6941 . . . . . . . . . . . 12 ((𝑎:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑎‘∅) ∈ ℕ0)
7976, 77, 78sylancl 585 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0m 1o) → (𝑎‘∅) ∈ ℕ0)
8079adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑎‘∅) ∈ ℕ0)
81 ply1coe.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
8281, 7, 9vr1cl 21298 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑋𝐵)
8382ad2antrr 722 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑋𝐵)
8457, 53mulgnn0cl 18635 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ (𝑎‘∅) ∈ ℕ0𝑋𝐵) → ((𝑎‘∅) 𝑋) ∈ 𝐵)
8575, 80, 83, 84syl3anc 1369 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅) 𝑋) ∈ 𝐵)
8671, 85eqeltrd 2839 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵)
87 fveq2 6756 . . . . . . . . . 10 (𝑐 = ∅ → (𝑎𝑐) = (𝑎‘∅))
88 fveq2 6756 . . . . . . . . . . 11 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = ((1o mVar 𝑅)‘∅))
8981vr1val 21273 . . . . . . . . . . 11 𝑋 = ((1o mVar 𝑅)‘∅)
9088, 89eqtr4di 2797 . . . . . . . . . 10 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = 𝑋)
9187, 90oveq12d 7273 . . . . . . . . 9 (𝑐 = ∅ → ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9254, 91gsumsn 19470 . . . . . . . 8 (((mulGrp‘(1o mPoly 𝑅)) ∈ Mnd ∧ ∅ ∈ V ∧ ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9351, 52, 86, 92syl3anc 1369 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9446, 93eqtrid 2790 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9544, 94, 713eqtrd 2782 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((𝑎‘∅) 𝑋))
9618, 95oveq12d 7273 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
9796mpteq2dva 5170 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
9897oveq2d 7271 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
99 nn0ex 12169 . . . . . 6 0 ∈ V
10099mptex 7081 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V
101100a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V)
1027fvexi 6770 . . . . 5 𝑃 ∈ V
103102a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑃 ∈ V)
104 ovexd 7290 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ V)
1059, 10eqtr3i 2768 . . . . 5 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
106105a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (Base‘𝑃) = (Base‘(1o mPoly 𝑅)))
107 eqid 2738 . . . . . 6 (+g𝑃) = (+g𝑃)
1087, 1, 107ply1plusg 21306 . . . . 5 (+g𝑃) = (+g‘(1o mPoly 𝑅))
109108a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (+g𝑃) = (+g‘(1o mPoly 𝑅)))
110101, 103, 104, 106, 109gsumpropd 18277 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
111 eqid 2738 . . . . 5 (0g𝑃) = (0g𝑃)
1121, 7, 111ply1mpl0 21336 . . . 4 (0g𝑃) = (0g‘(1o mPoly 𝑅))
1131mpllmod 21133 . . . . . 6 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ LMod)
1145, 13, 113sylancr 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ LMod)
115 lmodcmn 20086 . . . . 5 ((1o mPoly 𝑅) ∈ LMod → (1o mPoly 𝑅) ∈ CMnd)
116114, 115syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ CMnd)
11799a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ℕ0 ∈ V)
1187ply1lmod 21333 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
119118ad2antrr 722 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
120 eqid 2738 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
12116, 9, 7, 120coe1f 21292 . . . . . . . . 9 (𝐾𝐵𝐴:ℕ0⟶(Base‘𝑅))
122121adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐴:ℕ0⟶(Base‘𝑅))
123122ffvelrnda 6943 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑅))
1247ply1sca 21334 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
125124eqcomd 2744 . . . . . . . . 9 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
126125ad2antrr 722 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
127126fveq2d 6760 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
128123, 127eleqtrrd 2842 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)))
12974ad2antrr 722 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
130 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
13182ad2antrr 722 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
13257, 53mulgnn0cl 18635 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑋𝐵) → (𝑘 𝑋) ∈ 𝐵)
133129, 130, 131, 132syl3anc 1369 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
134 eqid 2738 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
135 eqid 2738 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1369, 134, 11, 135lmodvscl 20055 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
137119, 128, 133, 136syl3anc 1369 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
138137fmpttd 6971 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))):ℕ0𝐵)
1397, 81, 9, 11, 56, 53, 16ply1coefsupp 21376 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) finSupp (0g𝑃))
140 eqid 2738 . . . . . 6 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))
14140, 99, 26, 140mapsnf1o2 8640 . . . . 5 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
142141a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0)
14310, 112, 116, 117, 138, 139, 142gsumf1o 19432 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))))
144 eqidd 2739 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))
145 eqidd 2739 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))))
146 fveq2 6756 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝐴𝑘) = (𝐴‘(𝑎‘∅)))
147 oveq1 7262 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝑘 𝑋) = ((𝑎‘∅) 𝑋))
148146, 147oveq12d 7273 . . . . 5 (𝑘 = (𝑎‘∅) → ((𝐴𝑘) · (𝑘 𝑋)) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
14980, 144, 145, 148fmptco 6983 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
150149oveq2d 7271 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
151110, 143, 1503eqtrrd 2783 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
15215, 98, 1513eqtrd 2782 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  c0 4253  ifcif 4456  {csn 4558  cmpt 5153  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  ωcom 7687  1oc1o 8260  m cmap 8573  0cn0 12163  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  .gcmg 18615  CMndccmn 19301  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  LModclmod 20038   mVar cmvr 21018   mPoly cmpl 21019  PwSer1cps1 21256  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  eqcoe1ply1eq  21378  pmatcollpw1lem2  21832  mp2pm2mp  21868  plypf1  25278
  Copyright terms: Public domain W3C validator