MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1coe Structured version   Visualization version   GIF version

Theorem ply1coe 22213
Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
ply1coe.p 𝑃 = (Poly1𝑅)
ply1coe.x 𝑋 = (var1𝑅)
ply1coe.b 𝐵 = (Base‘𝑃)
ply1coe.n · = ( ·𝑠𝑃)
ply1coe.m 𝑀 = (mulGrp‘𝑃)
ply1coe.e = (.g𝑀)
ply1coe.a 𝐴 = (coe1𝐾)
Assertion
Ref Expression
ply1coe ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐾   𝑘,𝑋   ,𝑘   𝑅,𝑘   · ,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem ply1coe
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 psr1baslem 22097 . . 3 (ℕ0m 1o) = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑 “ ℕ) ∈ Fin}
3 eqid 2731 . . 3 (0g𝑅) = (0g𝑅)
4 eqid 2731 . . 3 (1r𝑅) = (1r𝑅)
5 1onn 8555 . . . 4 1o ∈ ω
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 1o ∈ ω)
7 ply1coe.p . . . 4 𝑃 = (Poly1𝑅)
8 ply1coe.b . . . 4 𝐵 = (Base‘𝑃)
97, 8ply1bas 22107 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
10 ply1coe.n . . . 4 · = ( ·𝑠𝑃)
117, 1, 10ply1vsca 22137 . . 3 · = ( ·𝑠 ‘(1o mPoly 𝑅))
12 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑅 ∈ Ring)
13 simpr 484 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾𝐵)
141, 2, 3, 4, 6, 9, 11, 12, 13mplcoe1 21972 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))))
15 ply1coe.a . . . . . . 7 𝐴 = (coe1𝐾)
1615fvcoe1 22120 . . . . . 6 ((𝐾𝐵𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
1716adantll 714 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
185a1i 11 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 1o ∈ ω)
19 eqid 2731 . . . . . . 7 (mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly 𝑅))
20 eqid 2731 . . . . . . 7 (.g‘(mulGrp‘(1o mPoly 𝑅))) = (.g‘(mulGrp‘(1o mPoly 𝑅)))
21 eqid 2731 . . . . . . 7 (1o mVar 𝑅) = (1o mVar 𝑅)
22 simpll 766 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑅 ∈ Ring)
23 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑎 ∈ (ℕ0m 1o))
24 eqidd 2732 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
25 0ex 5243 . . . . . . . . . . 11 ∅ ∈ V
26 fveq2 6822 . . . . . . . . . . . . 13 (𝑏 = ∅ → ((1o mVar 𝑅)‘𝑏) = ((1o mVar 𝑅)‘∅))
2726oveq1d 7361 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
2826oveq2d 7362 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
2927, 28eqeq12d 2747 . . . . . . . . . . 11 (𝑏 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
3025, 29ralsn 4631 . . . . . . . . . 10 (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3124, 30sylibr 234 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
32 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((1o mVar 𝑅)‘𝑥) = ((1o mVar 𝑅)‘∅))
3332oveq2d 7362 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3432oveq1d 7361 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3533, 34eqeq12d 2747 . . . . . . . . . . 11 (𝑥 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3635ralbidv 3155 . . . . . . . . . 10 (𝑥 = ∅ → (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3725, 36ralsn 4631 . . . . . . . . 9 (∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3831, 37sylibr 234 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
39 df1o2 8392 . . . . . . . . 9 1o = {∅}
4039raleqi 3290 . . . . . . . . 9 (∀𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4139, 40raleqbii 3310 . . . . . . . 8 (∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4238, 41sylibr 234 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
431, 2, 3, 4, 18, 19, 20, 21, 22, 23, 42mplcoe5 21975 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))))
4439mpteq1i 5180 . . . . . . . 8 (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))) = (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))
4544oveq2i 7357 . . . . . . 7 ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))))
461mplring 21956 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ Ring)
475, 46mpan 690 . . . . . . . . . 10 (𝑅 ∈ Ring → (1o mPoly 𝑅) ∈ Ring)
4819ringmgp 20157 . . . . . . . . . 10 ((1o mPoly 𝑅) ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
4947, 48syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5049ad2antrr 726 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5125a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∅ ∈ V)
52 ply1coe.e . . . . . . . . . . . 12 = (.g𝑀)
5319, 9mgpbas 20063 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅)))
5453a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅))))
55 ply1coe.m . . . . . . . . . . . . . 14 𝑀 = (mulGrp‘𝑃)
5655, 8mgpbas 20063 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
5756a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘𝑀))
58 ssv 3954 . . . . . . . . . . . . 13 𝐵 ⊆ V
5958a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 ⊆ V)
60 ovexd 7381 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) ∈ V)
61 eqid 2731 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
627, 1, 61ply1mulr 22138 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r‘(1o mPoly 𝑅))
6319, 62mgpplusg 20062 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
6455, 61mgpplusg 20062 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝑀)
6563, 64eqtr3i 2756 . . . . . . . . . . . . . 14 (+g‘(mulGrp‘(1o mPoly 𝑅))) = (+g𝑀)
6665oveqi 7359 . . . . . . . . . . . . 13 (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏)
6766a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏))
6820, 52, 54, 57, 59, 60, 67mulgpropd 19029 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (.g‘(mulGrp‘(1o mPoly 𝑅))) = )
6968oveqd 7363 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
7069adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
717ply1ring 22160 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
7255ringmgp 20157 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
7473ad2antrr 726 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑀 ∈ Mnd)
75 elmapi 8773 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m 1o) → 𝑎:1o⟶ℕ0)
76 0lt1o 8419 . . . . . . . . . . . 12 ∅ ∈ 1o
77 ffvelcdm 7014 . . . . . . . . . . . 12 ((𝑎:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑎‘∅) ∈ ℕ0)
7875, 76, 77sylancl 586 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0m 1o) → (𝑎‘∅) ∈ ℕ0)
7978adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑎‘∅) ∈ ℕ0)
80 ply1coe.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
8180, 7, 8vr1cl 22130 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑋𝐵)
8281ad2antrr 726 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑋𝐵)
8356, 52, 74, 79, 82mulgnn0cld 19008 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅) 𝑋) ∈ 𝐵)
8470, 83eqeltrd 2831 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵)
85 fveq2 6822 . . . . . . . . . 10 (𝑐 = ∅ → (𝑎𝑐) = (𝑎‘∅))
86 fveq2 6822 . . . . . . . . . . 11 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = ((1o mVar 𝑅)‘∅))
8780vr1val 22104 . . . . . . . . . . 11 𝑋 = ((1o mVar 𝑅)‘∅)
8886, 87eqtr4di 2784 . . . . . . . . . 10 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = 𝑋)
8985, 88oveq12d 7364 . . . . . . . . 9 (𝑐 = ∅ → ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9053, 89gsumsn 19866 . . . . . . . 8 (((mulGrp‘(1o mPoly 𝑅)) ∈ Mnd ∧ ∅ ∈ V ∧ ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9150, 51, 84, 90syl3anc 1373 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9245, 91eqtrid 2778 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9343, 92, 703eqtrd 2770 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((𝑎‘∅) 𝑋))
9417, 93oveq12d 7364 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
9594mpteq2dva 5182 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
9695oveq2d 7362 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
97 nn0ex 12387 . . . . . 6 0 ∈ V
9897mptex 7157 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V
9998a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V)
1007fvexi 6836 . . . . 5 𝑃 ∈ V
101100a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑃 ∈ V)
102 ovexd 7381 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ V)
1038, 9eqtr3i 2756 . . . . 5 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
104103a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (Base‘𝑃) = (Base‘(1o mPoly 𝑅)))
105 eqid 2731 . . . . . 6 (+g𝑃) = (+g𝑃)
1067, 1, 105ply1plusg 22136 . . . . 5 (+g𝑃) = (+g‘(1o mPoly 𝑅))
107106a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (+g𝑃) = (+g‘(1o mPoly 𝑅)))
10899, 101, 102, 104, 107gsumpropd 18586 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
109 eqid 2731 . . . . 5 (0g𝑃) = (0g𝑃)
1101, 7, 109ply1mpl0 22169 . . . 4 (0g𝑃) = (0g‘(1o mPoly 𝑅))
1111mpllmod 21955 . . . . . 6 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ LMod)
1125, 12, 111sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ LMod)
113 lmodcmn 20843 . . . . 5 ((1o mPoly 𝑅) ∈ LMod → (1o mPoly 𝑅) ∈ CMnd)
114112, 113syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ CMnd)
11597a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ℕ0 ∈ V)
1167ply1lmod 22164 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
117116ad2antrr 726 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
118 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
11915, 8, 7, 118coe1f 22124 . . . . . . . . 9 (𝐾𝐵𝐴:ℕ0⟶(Base‘𝑅))
120119adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐴:ℕ0⟶(Base‘𝑅))
121120ffvelcdmda 7017 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑅))
1227ply1sca 22165 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
123122eqcomd 2737 . . . . . . . . 9 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
124123ad2antrr 726 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
125124fveq2d 6826 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
126121, 125eleqtrrd 2834 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)))
12773ad2antrr 726 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
128 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
12981ad2antrr 726 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
13056, 52, 127, 128, 129mulgnn0cld 19008 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
131 eqid 2731 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
132 eqid 2731 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1338, 131, 10, 132lmodvscl 20811 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
134117, 126, 130, 133syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
135134fmpttd 7048 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))):ℕ0𝐵)
1367, 80, 8, 10, 55, 52, 15ply1coefsupp 22212 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) finSupp (0g𝑃))
137 eqid 2731 . . . . . 6 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))
13839, 97, 25, 137mapsnf1o2 8818 . . . . 5 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
139138a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0)
1409, 110, 114, 115, 135, 136, 139gsumf1o 19828 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))))
141 eqidd 2732 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))
142 eqidd 2732 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))))
143 fveq2 6822 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝐴𝑘) = (𝐴‘(𝑎‘∅)))
144 oveq1 7353 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝑘 𝑋) = ((𝑎‘∅) 𝑋))
145143, 144oveq12d 7364 . . . . 5 (𝑘 = (𝑎‘∅) → ((𝐴𝑘) · (𝑘 𝑋)) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
14679, 141, 142, 145fmptco 7062 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
147146oveq2d 7362 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
148108, 140, 1473eqtrrd 2771 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
14914, 96, 1483eqtrd 2770 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  c0 4280  ifcif 4472  {csn 4573  cmpt 5170  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  ωcom 7796  1oc1o 8378  m cmap 8750  0cn0 12381  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  .gcmg 18980  CMndccmn 19692  mulGrpcmgp 20058  1rcur 20099  Ringcrg 20151  LModclmod 20793   mVar cmvr 21842   mPoly cmpl 21843  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095
This theorem is referenced by:  eqcoe1ply1eq  22214  evls1fpws  22284  pmatcollpw1lem2  22690  mp2pm2mp  22726  plypf1  26144  ply1degltdimlem  33635
  Copyright terms: Public domain W3C validator