MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1coe Structured version   Visualization version   GIF version

Theorem ply1coe 22323
Description: Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
ply1coe.p 𝑃 = (Poly1𝑅)
ply1coe.x 𝑋 = (var1𝑅)
ply1coe.b 𝐵 = (Base‘𝑃)
ply1coe.n · = ( ·𝑠𝑃)
ply1coe.m 𝑀 = (mulGrp‘𝑃)
ply1coe.e = (.g𝑀)
ply1coe.a 𝐴 = (coe1𝐾)
Assertion
Ref Expression
ply1coe ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐾   𝑘,𝑋   ,𝑘   𝑅,𝑘   · ,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem ply1coe
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 psr1baslem 22207 . . 3 (ℕ0m 1o) = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑 “ ℕ) ∈ Fin}
3 eqid 2740 . . 3 (0g𝑅) = (0g𝑅)
4 eqid 2740 . . 3 (1r𝑅) = (1r𝑅)
5 1onn 8696 . . . 4 1o ∈ ω
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 1o ∈ ω)
7 ply1coe.p . . . 4 𝑃 = (Poly1𝑅)
8 ply1coe.b . . . 4 𝐵 = (Base‘𝑃)
97, 8ply1bas 22217 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
10 ply1coe.n . . . 4 · = ( ·𝑠𝑃)
117, 1, 10ply1vsca 22247 . . 3 · = ( ·𝑠 ‘(1o mPoly 𝑅))
12 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑅 ∈ Ring)
13 simpr 484 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾𝐵)
141, 2, 3, 4, 6, 9, 11, 12, 13mplcoe1 22078 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))))
15 ply1coe.a . . . . . . 7 𝐴 = (coe1𝐾)
1615fvcoe1 22230 . . . . . 6 ((𝐾𝐵𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
1716adantll 713 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝐾𝑎) = (𝐴‘(𝑎‘∅)))
185a1i 11 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 1o ∈ ω)
19 eqid 2740 . . . . . . 7 (mulGrp‘(1o mPoly 𝑅)) = (mulGrp‘(1o mPoly 𝑅))
20 eqid 2740 . . . . . . 7 (.g‘(mulGrp‘(1o mPoly 𝑅))) = (.g‘(mulGrp‘(1o mPoly 𝑅)))
21 eqid 2740 . . . . . . 7 (1o mVar 𝑅) = (1o mVar 𝑅)
22 simpll 766 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑅 ∈ Ring)
23 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑎 ∈ (ℕ0m 1o))
24 eqidd 2741 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
25 0ex 5325 . . . . . . . . . . 11 ∅ ∈ V
26 fveq2 6920 . . . . . . . . . . . . 13 (𝑏 = ∅ → ((1o mVar 𝑅)‘𝑏) = ((1o mVar 𝑅)‘∅))
2726oveq1d 7463 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
2826oveq2d 7464 . . . . . . . . . . . 12 (𝑏 = ∅ → (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
2927, 28eqeq12d 2756 . . . . . . . . . . 11 (𝑏 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅))))
3025, 29ralsn 4705 . . . . . . . . . 10 (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3124, 30sylibr 234 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
32 fveq2 6920 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((1o mVar 𝑅)‘𝑥) = ((1o mVar 𝑅)‘∅))
3332oveq2d 7464 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)))
3432oveq1d 7463 . . . . . . . . . . . 12 (𝑥 = ∅ → (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3533, 34eqeq12d 2756 . . . . . . . . . . 11 (𝑥 = ∅ → ((((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3635ralbidv 3184 . . . . . . . . . 10 (𝑥 = ∅ → (∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏))))
3725, 36ralsn 4705 . . . . . . . . 9 (∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘∅)) = (((1o mVar 𝑅)‘∅)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
3831, 37sylibr 234 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
39 df1o2 8529 . . . . . . . . 9 1o = {∅}
4039raleqi 3332 . . . . . . . . 9 (∀𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4139, 40raleqbii 3352 . . . . . . . 8 (∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)) ↔ ∀𝑥 ∈ {∅}∀𝑏 ∈ {∅} (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
4238, 41sylibr 234 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∀𝑥 ∈ 1o𝑏 ∈ 1o (((1o mVar 𝑅)‘𝑏)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑥)) = (((1o mVar 𝑅)‘𝑥)(+g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑏)))
431, 2, 3, 4, 18, 19, 20, 21, 22, 23, 42mplcoe5 22081 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))))
4439mpteq1i 5262 . . . . . . . 8 (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))) = (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))
4544oveq2i 7459 . . . . . . 7 ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐))))
461mplring 22062 . . . . . . . . . . 11 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ Ring)
475, 46mpan 689 . . . . . . . . . 10 (𝑅 ∈ Ring → (1o mPoly 𝑅) ∈ Ring)
4819ringmgp 20266 . . . . . . . . . 10 ((1o mPoly 𝑅) ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
4947, 48syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5049ad2antrr 725 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (mulGrp‘(1o mPoly 𝑅)) ∈ Mnd)
5125a1i 11 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ∅ ∈ V)
52 ply1coe.e . . . . . . . . . . . 12 = (.g𝑀)
5319, 9mgpbas 20167 . . . . . . . . . . . . 13 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅)))
5453a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘(mulGrp‘(1o mPoly 𝑅))))
55 ply1coe.m . . . . . . . . . . . . . 14 𝑀 = (mulGrp‘𝑃)
5655, 8mgpbas 20167 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑀)
5756a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 = (Base‘𝑀))
58 ssv 4033 . . . . . . . . . . . . 13 𝐵 ⊆ V
5958a1i 11 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐵 ⊆ V)
60 ovexd 7483 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) ∈ V)
61 eqid 2740 . . . . . . . . . . . . . . . . 17 (.r𝑃) = (.r𝑃)
627, 1, 61ply1mulr 22248 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r‘(1o mPoly 𝑅))
6319, 62mgpplusg 20165 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g‘(mulGrp‘(1o mPoly 𝑅)))
6455, 61mgpplusg 20165 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝑀)
6563, 64eqtr3i 2770 . . . . . . . . . . . . . 14 (+g‘(mulGrp‘(1o mPoly 𝑅))) = (+g𝑀)
6665oveqi 7461 . . . . . . . . . . . . 13 (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏)
6766a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ (𝑎 ∈ V ∧ 𝑏 ∈ V)) → (𝑎(+g‘(mulGrp‘(1o mPoly 𝑅)))𝑏) = (𝑎(+g𝑀)𝑏))
6820, 52, 54, 57, 59, 60, 67mulgpropd 19156 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (.g‘(mulGrp‘(1o mPoly 𝑅))) = )
6968oveqd 7465 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
7069adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) = ((𝑎‘∅) 𝑋))
717ply1ring 22270 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
7255ringmgp 20266 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑀 ∈ Mnd)
7371, 72syl 17 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
7473ad2antrr 725 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑀 ∈ Mnd)
75 elmapi 8907 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m 1o) → 𝑎:1o⟶ℕ0)
76 0lt1o 8560 . . . . . . . . . . . 12 ∅ ∈ 1o
77 ffvelcdm 7115 . . . . . . . . . . . 12 ((𝑎:1o⟶ℕ0 ∧ ∅ ∈ 1o) → (𝑎‘∅) ∈ ℕ0)
7875, 76, 77sylancl 585 . . . . . . . . . . 11 (𝑎 ∈ (ℕ0m 1o) → (𝑎‘∅) ∈ ℕ0)
7978adantl 481 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑎‘∅) ∈ ℕ0)
80 ply1coe.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
8180, 7, 8vr1cl 22240 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑋𝐵)
8281ad2antrr 725 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → 𝑋𝐵)
8356, 52, 74, 79, 82mulgnn0cld 19135 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅) 𝑋) ∈ 𝐵)
8470, 83eqeltrd 2844 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵)
85 fveq2 6920 . . . . . . . . . 10 (𝑐 = ∅ → (𝑎𝑐) = (𝑎‘∅))
86 fveq2 6920 . . . . . . . . . . 11 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = ((1o mVar 𝑅)‘∅))
8780vr1val 22214 . . . . . . . . . . 11 𝑋 = ((1o mVar 𝑅)‘∅)
8886, 87eqtr4di 2798 . . . . . . . . . 10 (𝑐 = ∅ → ((1o mVar 𝑅)‘𝑐) = 𝑋)
8985, 88oveq12d 7466 . . . . . . . . 9 (𝑐 = ∅ → ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9053, 89gsumsn 19996 . . . . . . . 8 (((mulGrp‘(1o mPoly 𝑅)) ∈ Mnd ∧ ∅ ∈ V ∧ ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋) ∈ 𝐵) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9150, 51, 84, 90syl3anc 1371 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ {∅} ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9245, 91eqtrid 2792 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((mulGrp‘(1o mPoly 𝑅)) Σg (𝑐 ∈ 1o ↦ ((𝑎𝑐)(.g‘(mulGrp‘(1o mPoly 𝑅)))((1o mVar 𝑅)‘𝑐)))) = ((𝑎‘∅)(.g‘(mulGrp‘(1o mPoly 𝑅)))𝑋))
9343, 92, 703eqtrd 2784 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))) = ((𝑎‘∅) 𝑋))
9417, 93oveq12d 7466 . . . 4 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑎 ∈ (ℕ0m 1o)) → ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
9594mpteq2dva 5266 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅))))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
9695oveq2d 7464 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐾𝑎) · (𝑏 ∈ (ℕ0m 1o) ↦ if(𝑏 = 𝑎, (1r𝑅), (0g𝑅)))))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
97 nn0ex 12559 . . . . . 6 0 ∈ V
9897mptex 7260 . . . . 5 (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V
9998a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∈ V)
1007fvexi 6934 . . . . 5 𝑃 ∈ V
101100a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝑃 ∈ V)
102 ovexd 7483 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ V)
1038, 9eqtr3i 2770 . . . . 5 (Base‘𝑃) = (Base‘(1o mPoly 𝑅))
104103a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (Base‘𝑃) = (Base‘(1o mPoly 𝑅)))
105 eqid 2740 . . . . . 6 (+g𝑃) = (+g𝑃)
1067, 1, 105ply1plusg 22246 . . . . 5 (+g𝑃) = (+g‘(1o mPoly 𝑅))
107106a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (+g𝑃) = (+g‘(1o mPoly 𝑅)))
10899, 101, 102, 104, 107gsumpropd 18716 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
109 eqid 2740 . . . . 5 (0g𝑃) = (0g𝑃)
1101, 7, 109ply1mpl0 22279 . . . 4 (0g𝑃) = (0g‘(1o mPoly 𝑅))
1111mpllmod 22061 . . . . . 6 ((1o ∈ ω ∧ 𝑅 ∈ Ring) → (1o mPoly 𝑅) ∈ LMod)
1125, 12, 111sylancr 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ LMod)
113 lmodcmn 20930 . . . . 5 ((1o mPoly 𝑅) ∈ LMod → (1o mPoly 𝑅) ∈ CMnd)
114112, 113syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (1o mPoly 𝑅) ∈ CMnd)
11597a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ℕ0 ∈ V)
1167ply1lmod 22274 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
117116ad2antrr 725 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
118 eqid 2740 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
11915, 8, 7, 118coe1f 22234 . . . . . . . . 9 (𝐾𝐵𝐴:ℕ0⟶(Base‘𝑅))
120119adantl 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐴:ℕ0⟶(Base‘𝑅))
121120ffvelcdmda 7118 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘𝑅))
1227ply1sca 22275 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
123122eqcomd 2746 . . . . . . . . 9 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
124123ad2antrr 725 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Scalar‘𝑃) = 𝑅)
125124fveq2d 6924 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
126121, 125eleqtrrd 2847 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)))
12773ad2antrr 725 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ Mnd)
128 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
12981ad2antrr 725 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑋𝐵)
13056, 52, 127, 128, 129mulgnn0cld 19135 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ 𝐵)
131 eqid 2740 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
132 eqid 2740 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1338, 131, 10, 132lmodvscl 20898 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝐴𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘 𝑋) ∈ 𝐵) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
134117, 126, 130, 133syl3anc 1371 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐾𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑘 𝑋)) ∈ 𝐵)
135134fmpttd 7149 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))):ℕ0𝐵)
1367, 80, 8, 10, 55, 52, 15ply1coefsupp 22322 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) finSupp (0g𝑃))
137 eqid 2740 . . . . . 6 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))
13839, 97, 25, 137mapsnf1o2 8952 . . . . 5 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
139138a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0)
1409, 110, 114, 115, 135, 136, 139gsumf1o 19958 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))) = ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))))
141 eqidd 2741 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))
142 eqidd 2741 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))))
143 fveq2 6920 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝐴𝑘) = (𝐴‘(𝑎‘∅)))
144 oveq1 7455 . . . . . 6 (𝑘 = (𝑎‘∅) → (𝑘 𝑋) = ((𝑎‘∅) 𝑋))
145143, 144oveq12d 7466 . . . . 5 (𝑘 = (𝑎‘∅) → ((𝐴𝑘) · (𝑘 𝑋)) = ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))
14679, 141, 142, 145fmptco 7163 . . . 4 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))) = (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋))))
147146oveq2d 7464 . . 3 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg ((𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋))) ∘ (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)))) = ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))))
148108, 140, 1473eqtrrd 2785 . 2 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → ((1o mPoly 𝑅) Σg (𝑎 ∈ (ℕ0m 1o) ↦ ((𝐴‘(𝑎‘∅)) · ((𝑎‘∅) 𝑋)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
14914, 96, 1483eqtrd 2784 1 ((𝑅 ∈ Ring ∧ 𝐾𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴𝑘) · (𝑘 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  c0 4352  ifcif 4548  {csn 4648  cmpt 5249  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  ωcom 7903  1oc1o 8515  m cmap 8884  0cn0 12553  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107  CMndccmn 19822  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  LModclmod 20880   mVar cmvr 21948   mPoly cmpl 21949  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205
This theorem is referenced by:  eqcoe1ply1eq  22324  evls1fpws  22394  pmatcollpw1lem2  22802  mp2pm2mp  22838  plypf1  26271  ply1degltdimlem  33635
  Copyright terms: Public domain W3C validator