MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusp2 Structured version   Visualization version   GIF version

Theorem iscusp2 24189
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.)
Hypotheses
Ref Expression
iscusp2.1 𝐵 = (Base‘𝑊)
iscusp2.2 𝑈 = (UnifSt‘𝑊)
iscusp2.3 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
iscusp2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)))
Distinct variable group:   𝑊,𝑐
Allowed substitution hints:   𝐵(𝑐)   𝑈(𝑐)   𝐽(𝑐)

Proof of Theorem iscusp2
StepHypRef Expression
1 iscusp 24186 . 2 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
2 iscusp2.1 . . . . 5 𝐵 = (Base‘𝑊)
32fveq2i 6861 . . . 4 (Fil‘𝐵) = (Fil‘(Base‘𝑊))
4 iscusp2.2 . . . . . . 7 𝑈 = (UnifSt‘𝑊)
54fveq2i 6861 . . . . . 6 (CauFilu𝑈) = (CauFilu‘(UnifSt‘𝑊))
65eleq2i 2820 . . . . 5 (𝑐 ∈ (CauFilu𝑈) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)))
7 iscusp2.3 . . . . . . 7 𝐽 = (TopOpen‘𝑊)
87oveq1i 7397 . . . . . 6 (𝐽 fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐)
98neeq1i 2989 . . . . 5 ((𝐽 fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)
106, 9imbi12i 350 . . . 4 ((𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
113, 10raleqbii 3317 . . 3 (∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
1211anbi2i 623 . 2 ((𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)) ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
131, 12bitr4i 278 1 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu𝑈) → (𝐽 fLim 𝑐) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  TopOpenctopn 17384  Filcfil 23732   fLim cflim 23821  UnifStcuss 24141  UnifSpcusp 24142  CauFiluccfilu 24173  CUnifSpccusp 24184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-cusp 24185
This theorem is referenced by:  cmetcusp1  25253
  Copyright terms: Public domain W3C validator