| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscusp2 | Structured version Visualization version GIF version | ||
| Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.) |
| Ref | Expression |
|---|---|
| iscusp2.1 | ⊢ 𝐵 = (Base‘𝑊) |
| iscusp2.2 | ⊢ 𝑈 = (UnifSt‘𝑊) |
| iscusp2.3 | ⊢ 𝐽 = (TopOpen‘𝑊) |
| Ref | Expression |
|---|---|
| iscusp2 | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusp 24237 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
| 2 | iscusp2.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | fveq2i 6879 | . . . 4 ⊢ (Fil‘𝐵) = (Fil‘(Base‘𝑊)) |
| 4 | iscusp2.2 | . . . . . . 7 ⊢ 𝑈 = (UnifSt‘𝑊) | |
| 5 | 4 | fveq2i 6879 | . . . . . 6 ⊢ (CauFilu‘𝑈) = (CauFilu‘(UnifSt‘𝑊)) |
| 6 | 5 | eleq2i 2826 | . . . . 5 ⊢ (𝑐 ∈ (CauFilu‘𝑈) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊))) |
| 7 | iscusp2.3 | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑊) | |
| 8 | 7 | oveq1i 7415 | . . . . . 6 ⊢ (𝐽 fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐) |
| 9 | 8 | neeq1i 2996 | . . . . 5 ⊢ ((𝐽 fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) |
| 10 | 6, 9 | imbi12i 350 | . . . 4 ⊢ ((𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
| 11 | 3, 10 | raleqbii 3323 | . . 3 ⊢ (∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
| 12 | 11 | anbi2i 623 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅)) ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| 13 | 1, 12 | bitr4i 278 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 TopOpenctopn 17435 Filcfil 23783 fLim cflim 23872 UnifStcuss 24192 UnifSpcusp 24193 CauFiluccfilu 24224 CUnifSpccusp 24235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-cusp 24236 |
| This theorem is referenced by: cmetcusp1 25305 |
| Copyright terms: Public domain | W3C validator |