![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscusp2 | Structured version Visualization version GIF version |
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.) |
Ref | Expression |
---|---|
iscusp2.1 | ⊢ 𝐵 = (Base‘𝑊) |
iscusp2.2 | ⊢ 𝑈 = (UnifSt‘𝑊) |
iscusp2.3 | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
iscusp2 | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusp 24324 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
2 | iscusp2.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | fveq2i 6910 | . . . 4 ⊢ (Fil‘𝐵) = (Fil‘(Base‘𝑊)) |
4 | iscusp2.2 | . . . . . . 7 ⊢ 𝑈 = (UnifSt‘𝑊) | |
5 | 4 | fveq2i 6910 | . . . . . 6 ⊢ (CauFilu‘𝑈) = (CauFilu‘(UnifSt‘𝑊)) |
6 | 5 | eleq2i 2831 | . . . . 5 ⊢ (𝑐 ∈ (CauFilu‘𝑈) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊))) |
7 | iscusp2.3 | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑊) | |
8 | 7 | oveq1i 7441 | . . . . . 6 ⊢ (𝐽 fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐) |
9 | 8 | neeq1i 3003 | . . . . 5 ⊢ ((𝐽 fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) |
10 | 6, 9 | imbi12i 350 | . . . 4 ⊢ ((𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
11 | 3, 10 | raleqbii 3342 | . . 3 ⊢ (∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
12 | 11 | anbi2i 623 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅)) ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
13 | 1, 12 | bitr4i 278 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 TopOpenctopn 17468 Filcfil 23869 fLim cflim 23958 UnifStcuss 24278 UnifSpcusp 24279 CauFiluccfilu 24311 CUnifSpccusp 24322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-cusp 24323 |
This theorem is referenced by: cmetcusp1 25401 |
Copyright terms: Public domain | W3C validator |