Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscusp2 | Structured version Visualization version GIF version |
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.) |
Ref | Expression |
---|---|
iscusp2.1 | ⊢ 𝐵 = (Base‘𝑊) |
iscusp2.2 | ⊢ 𝑈 = (UnifSt‘𝑊) |
iscusp2.3 | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
iscusp2 | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusp 23196 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
2 | iscusp2.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | fveq2i 6720 | . . . 4 ⊢ (Fil‘𝐵) = (Fil‘(Base‘𝑊)) |
4 | iscusp2.2 | . . . . . . 7 ⊢ 𝑈 = (UnifSt‘𝑊) | |
5 | 4 | fveq2i 6720 | . . . . . 6 ⊢ (CauFilu‘𝑈) = (CauFilu‘(UnifSt‘𝑊)) |
6 | 5 | eleq2i 2829 | . . . . 5 ⊢ (𝑐 ∈ (CauFilu‘𝑈) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊))) |
7 | iscusp2.3 | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑊) | |
8 | 7 | oveq1i 7223 | . . . . . 6 ⊢ (𝐽 fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐) |
9 | 8 | neeq1i 3005 | . . . . 5 ⊢ ((𝐽 fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) |
10 | 6, 9 | imbi12i 354 | . . . 4 ⊢ ((𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
11 | 3, 10 | raleqbii 3156 | . . 3 ⊢ (∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
12 | 11 | anbi2i 626 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅)) ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
13 | 1, 12 | bitr4i 281 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∅c0 4237 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 TopOpenctopn 16926 Filcfil 22742 fLim cflim 22831 UnifStcuss 23151 UnifSpcusp 23152 CauFiluccfilu 23183 CUnifSpccusp 23194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 df-cusp 23195 |
This theorem is referenced by: cmetcusp1 24250 |
Copyright terms: Public domain | W3C validator |