![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscusp2 | Structured version Visualization version GIF version |
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.) |
Ref | Expression |
---|---|
iscusp2.1 | ⊢ 𝐵 = (Base‘𝑊) |
iscusp2.2 | ⊢ 𝑈 = (UnifSt‘𝑊) |
iscusp2.3 | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
iscusp2 | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusp 24295 | . 2 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | |
2 | iscusp2.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | fveq2i 6904 | . . . 4 ⊢ (Fil‘𝐵) = (Fil‘(Base‘𝑊)) |
4 | iscusp2.2 | . . . . . . 7 ⊢ 𝑈 = (UnifSt‘𝑊) | |
5 | 4 | fveq2i 6904 | . . . . . 6 ⊢ (CauFilu‘𝑈) = (CauFilu‘(UnifSt‘𝑊)) |
6 | 5 | eleq2i 2818 | . . . . 5 ⊢ (𝑐 ∈ (CauFilu‘𝑈) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊))) |
7 | iscusp2.3 | . . . . . . 7 ⊢ 𝐽 = (TopOpen‘𝑊) | |
8 | 7 | oveq1i 7434 | . . . . . 6 ⊢ (𝐽 fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐) |
9 | 8 | neeq1i 2995 | . . . . 5 ⊢ ((𝐽 fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) |
10 | 6, 9 | imbi12i 349 | . . . 4 ⊢ ((𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
11 | 3, 10 | raleqbii 3328 | . . 3 ⊢ (∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
12 | 11 | anbi2i 621 | . 2 ⊢ ((𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅)) ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
13 | 1, 12 | bitr4i 277 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∅c0 4325 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 TopOpenctopn 17436 Filcfil 23840 fLim cflim 23929 UnifStcuss 24249 UnifSpcusp 24250 CauFiluccfilu 24282 CUnifSpccusp 24293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-iota 6506 df-fv 6562 df-ov 7427 df-cusp 24294 |
This theorem is referenced by: cmetcusp1 25372 |
Copyright terms: Public domain | W3C validator |