Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoset Structured version   Visualization version   GIF version

Theorem tendoset 39625
Description: The set of trace-preserving endomorphisms on the set of translations for a fiducial co-atom π‘Š. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l ≀ = (leβ€˜πΎ)
tendoset.h 𝐻 = (LHypβ€˜πΎ)
tendoset.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendoset.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
tendoset.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
tendoset ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐸 = {𝑠 ∣ (𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))})
Distinct variable groups:   𝑓,𝑠,𝑔,𝐾   𝑇,𝑓,𝑔,𝑠   π‘Š,𝑠,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑓,𝑔,𝑠)   𝐸(𝑓,𝑔,𝑠)   𝐻(𝑓,𝑔,𝑠)   ≀ (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem tendoset
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 tendoset.e . 2 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
2 tendoset.l . . . . 5 ≀ = (leβ€˜πΎ)
3 tendoset.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3tendofset 39624 . . . 4 (𝐾 ∈ 𝑉 β†’ (TEndoβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“))}))
54fveq1d 6893 . . 3 (𝐾 ∈ 𝑉 β†’ ((TEndoβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“))})β€˜π‘Š))
6 fveq2 6891 . . . . . . . 8 (𝑀 = π‘Š β†’ ((LTrnβ€˜πΎ)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘Š))
76, 6feq23d 6712 . . . . . . 7 (𝑀 = π‘Š β†’ (𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ↔ 𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š)))
86raleqdv 3325 . . . . . . . 8 (𝑀 = π‘Š β†’ (βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ↔ βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”))))
96, 8raleqbidv 3342 . . . . . . 7 (𝑀 = π‘Š β†’ (βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ↔ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”))))
10 fveq2 6891 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ ((trLβ€˜πΎ)β€˜π‘€) = ((trLβ€˜πΎ)β€˜π‘Š))
11 tendoset.r . . . . . . . . . . 11 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
1210, 11eqtr4di 2790 . . . . . . . . . 10 (𝑀 = π‘Š β†’ ((trLβ€˜πΎ)β€˜π‘€) = 𝑅)
1312fveq1d 6893 . . . . . . . . 9 (𝑀 = π‘Š β†’ (((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) = (π‘…β€˜(π‘ β€˜π‘“)))
1412fveq1d 6893 . . . . . . . . 9 (𝑀 = π‘Š β†’ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) = (π‘…β€˜π‘“))
1513, 14breq12d 5161 . . . . . . . 8 (𝑀 = π‘Š β†’ ((((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ↔ (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“)))
166, 15raleqbidv 3342 . . . . . . 7 (𝑀 = π‘Š β†’ (βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“) ↔ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“)))
177, 9, 163anbi123d 1436 . . . . . 6 (𝑀 = π‘Š β†’ ((𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“)) ↔ (𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))))
1817abbidv 2801 . . . . 5 (𝑀 = π‘Š β†’ {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“))} = {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))})
19 eqid 2732 . . . . 5 (𝑀 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“))}) = (𝑀 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“))})
20 fvex 6904 . . . . . . . 8 ((LTrnβ€˜πΎ)β€˜π‘Š) ∈ V
2120, 20mapval 8831 . . . . . . 7 (((LTrnβ€˜πΎ)β€˜π‘Š) ↑m ((LTrnβ€˜πΎ)β€˜π‘Š)) = {𝑠 ∣ 𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š)}
22 ovex 7441 . . . . . . 7 (((LTrnβ€˜πΎ)β€˜π‘Š) ↑m ((LTrnβ€˜πΎ)β€˜π‘Š)) ∈ V
2321, 22eqeltrri 2830 . . . . . 6 {𝑠 ∣ 𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š)} ∈ V
24 simp1 1136 . . . . . . 7 ((𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“)) β†’ 𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š))
2524ss2abi 4063 . . . . . 6 {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))} βŠ† {𝑠 ∣ 𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š)}
2623, 25ssexi 5322 . . . . 5 {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))} ∈ V
2718, 19, 26fvmpt 6998 . . . 4 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“))})β€˜π‘Š) = {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))})
28 tendoset.t . . . . . . 7 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
2928, 28feq23i 6711 . . . . . 6 (𝑠:π‘‡βŸΆπ‘‡ ↔ 𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š))
3028raleqi 3323 . . . . . . 7 (βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ↔ βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)))
3128, 30raleqbii 3338 . . . . . 6 (βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ↔ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)))
3228raleqi 3323 . . . . . 6 (βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“) ↔ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))
3329, 31, 323anbi123i 1155 . . . . 5 ((𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“)) ↔ (𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“)))
3433abbii 2802 . . . 4 {𝑠 ∣ (𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))} = {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘Š)⟢((LTrnβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘Š)(π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))}
3527, 34eqtr4di 2790 . . 3 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrnβ€˜πΎ)β€˜π‘€)⟢((LTrnβ€˜πΎ)β€˜π‘€) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)βˆ€π‘” ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ ((LTrnβ€˜πΎ)β€˜π‘€)(((trLβ€˜πΎ)β€˜π‘€)β€˜(π‘ β€˜π‘“)) ≀ (((trLβ€˜πΎ)β€˜π‘€)β€˜π‘“))})β€˜π‘Š) = {𝑠 ∣ (𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))})
365, 35sylan9eq 2792 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ ((TEndoβ€˜πΎ)β€˜π‘Š) = {𝑠 ∣ (𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))})
371, 36eqtrid 2784 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐸 = {𝑠 ∣ (𝑠:π‘‡βŸΆπ‘‡ ∧ βˆ€π‘“ ∈ 𝑇 βˆ€π‘” ∈ 𝑇 (π‘ β€˜(𝑓 ∘ 𝑔)) = ((π‘ β€˜π‘“) ∘ (π‘ β€˜π‘”)) ∧ βˆ€π‘“ ∈ 𝑇 (π‘…β€˜(π‘ β€˜π‘“)) ≀ (π‘…β€˜π‘“))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  Vcvv 3474   class class class wbr 5148   ↦ cmpt 5231   ∘ ccom 5680  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ↑m cmap 8819  lecple 17203  LHypclh 38850  LTrncltrn 38967  trLctrl 39024  TEndoctendo 39618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-tendo 39621
This theorem is referenced by:  istendo  39626
  Copyright terms: Public domain W3C validator