Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoset Structured version   Visualization version   GIF version

Theorem tendoset 36780
Description: The set of trace-preserving endomorphisms on the set of translations for a fiducial co-atom 𝑊. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoset ((𝐾𝑉𝑊𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
Distinct variable groups:   𝑓,𝑠,𝑔,𝐾   𝑇,𝑓,𝑔,𝑠   𝑊,𝑠,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑓,𝑔,𝑠)   𝐸(𝑓,𝑔,𝑠)   𝐻(𝑓,𝑔,𝑠)   (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem tendoset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tendoset.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
2 tendoset.l . . . . 5 = (le‘𝐾)
3 tendoset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3tendofset 36779 . . . 4 (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
54fveq1d 6413 . . 3 (𝐾𝑉 → ((TEndo‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})‘𝑊))
6 fveq2 6411 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
76, 6feq23d 6251 . . . . . . 7 (𝑤 = 𝑊 → (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ↔ 𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)))
86raleqdv 3327 . . . . . . . 8 (𝑤 = 𝑊 → (∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
96, 8raleqbidv 3335 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
10 fveq2 6411 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = ((trL‘𝐾)‘𝑊))
11 tendoset.r . . . . . . . . . . 11 𝑅 = ((trL‘𝐾)‘𝑊)
1210, 11syl6eqr 2851 . . . . . . . . . 10 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = 𝑅)
1312fveq1d 6413 . . . . . . . . 9 (𝑤 = 𝑊 → (((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) = (𝑅‘(𝑠𝑓)))
1412fveq1d 6413 . . . . . . . . 9 (𝑤 = 𝑊 → (((trL‘𝐾)‘𝑤)‘𝑓) = (𝑅𝑓))
1513, 14breq12d 4856 . . . . . . . 8 (𝑤 = 𝑊 → ((((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓) ↔ (𝑅‘(𝑠𝑓)) (𝑅𝑓)))
166, 15raleqbidv 3335 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓)))
177, 9, 163anbi123d 1561 . . . . . 6 (𝑤 = 𝑊 → ((𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓)) ↔ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))))
1817abbidv 2918 . . . . 5 (𝑤 = 𝑊 → {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))} = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))})
19 eqid 2799 . . . . 5 (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})
20 fvex 6424 . . . . . . . 8 ((LTrn‘𝐾)‘𝑊) ∈ V
2120, 20mapval 8107 . . . . . . 7 (((LTrn‘𝐾)‘𝑊) ↑𝑚 ((LTrn‘𝐾)‘𝑊)) = {𝑠𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)}
22 ovex 6910 . . . . . . 7 (((LTrn‘𝐾)‘𝑊) ↑𝑚 ((LTrn‘𝐾)‘𝑊)) ∈ V
2321, 22eqeltrri 2875 . . . . . 6 {𝑠𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)} ∈ V
24 simp1 1167 . . . . . . 7 ((𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓)) → 𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
2524ss2abi 3870 . . . . . 6 {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))} ⊆ {𝑠𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)}
2623, 25ssexi 4998 . . . . 5 {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))} ∈ V
2718, 19, 26fvmpt 6507 . . . 4 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})‘𝑊) = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))})
28 tendoset.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
2928, 28feq23i 6250 . . . . . 6 (𝑠:𝑇𝑇𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
3028raleqi 3325 . . . . . . 7 (∀𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)))
3128, 30raleqbii 3171 . . . . . 6 (∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)))
3228raleqi 3325 . . . . . 6 (∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))
3329, 31, 323anbi123i 1195 . . . . 5 ((𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓)) ↔ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓)))
3433abbii 2916 . . . 4 {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))} = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))}
3527, 34syl6eqr 2851 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})‘𝑊) = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
365, 35sylan9eq 2853 . 2 ((𝐾𝑉𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
371, 36syl5eq 2845 1 ((𝐾𝑉𝑊𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  {cab 2785  wral 3089  Vcvv 3385   class class class wbr 4843  cmpt 4922  ccom 5316  wf 6097  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  lecple 16274  LHypclh 36005  LTrncltrn 36122  trLctrl 36179  TEndoctendo 36773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-map 8097  df-tendo 36776
This theorem is referenced by:  istendo  36781
  Copyright terms: Public domain W3C validator