Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoset Structured version   Visualization version   GIF version

Theorem tendoset 40716
Description: The set of trace-preserving endomorphisms on the set of translations for a fiducial co-atom 𝑊. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoset ((𝐾𝑉𝑊𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
Distinct variable groups:   𝑓,𝑠,𝑔,𝐾   𝑇,𝑓,𝑔,𝑠   𝑊,𝑠,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑓,𝑔,𝑠)   𝐸(𝑓,𝑔,𝑠)   𝐻(𝑓,𝑔,𝑠)   (𝑓,𝑔,𝑠)   𝑉(𝑓,𝑔,𝑠)

Proof of Theorem tendoset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 tendoset.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
2 tendoset.l . . . . 5 = (le‘𝐾)
3 tendoset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3tendofset 40715 . . . 4 (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
54fveq1d 6922 . . 3 (𝐾𝑉 → ((TEndo‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})‘𝑊))
6 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
76, 6feq23d 6742 . . . . . . 7 (𝑤 = 𝑊 → (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ↔ 𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)))
86raleqdv 3334 . . . . . . . 8 (𝑤 = 𝑊 → (∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
96, 8raleqbidv 3354 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
10 fveq2 6920 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = ((trL‘𝐾)‘𝑊))
11 tendoset.r . . . . . . . . . . 11 𝑅 = ((trL‘𝐾)‘𝑊)
1210, 11eqtr4di 2798 . . . . . . . . . 10 (𝑤 = 𝑊 → ((trL‘𝐾)‘𝑤) = 𝑅)
1312fveq1d 6922 . . . . . . . . 9 (𝑤 = 𝑊 → (((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) = (𝑅‘(𝑠𝑓)))
1412fveq1d 6922 . . . . . . . . 9 (𝑤 = 𝑊 → (((trL‘𝐾)‘𝑤)‘𝑓) = (𝑅𝑓))
1513, 14breq12d 5179 . . . . . . . 8 (𝑤 = 𝑊 → ((((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓) ↔ (𝑅‘(𝑠𝑓)) (𝑅𝑓)))
166, 15raleqbidv 3354 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓)))
177, 9, 163anbi123d 1436 . . . . . 6 (𝑤 = 𝑊 → ((𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓)) ↔ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))))
1817abbidv 2811 . . . . 5 (𝑤 = 𝑊 → {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))} = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))})
19 eqid 2740 . . . . 5 (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})
20 fvex 6933 . . . . . . . 8 ((LTrn‘𝐾)‘𝑊) ∈ V
2120, 20mapval 8896 . . . . . . 7 (((LTrn‘𝐾)‘𝑊) ↑m ((LTrn‘𝐾)‘𝑊)) = {𝑠𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)}
22 ovex 7481 . . . . . . 7 (((LTrn‘𝐾)‘𝑊) ↑m ((LTrn‘𝐾)‘𝑊)) ∈ V
2321, 22eqeltrri 2841 . . . . . 6 {𝑠𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)} ∈ V
24 simp1 1136 . . . . . . 7 ((𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓)) → 𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
2524ss2abi 4090 . . . . . 6 {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))} ⊆ {𝑠𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊)}
2623, 25ssexi 5340 . . . . 5 {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))} ∈ V
2718, 19, 26fvmpt 7029 . . . 4 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})‘𝑊) = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))})
28 tendoset.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
2928, 28feq23i 6741 . . . . . 6 (𝑠:𝑇𝑇𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊))
3028raleqi 3332 . . . . . . 7 (∀𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)))
3128, 30raleqbii 3352 . . . . . 6 (∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)))
3228raleqi 3332 . . . . . 6 (∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))
3329, 31, 323anbi123i 1155 . . . . 5 ((𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓)) ↔ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓)))
3433abbii 2812 . . . 4 {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))} = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑊)⟶((LTrn‘𝐾)‘𝑊) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑊)(𝑅‘(𝑠𝑓)) (𝑅𝑓))}
3527, 34eqtr4di 2798 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})‘𝑊) = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
365, 35sylan9eq 2800 . 2 ((𝐾𝑉𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
371, 36eqtrid 2792 1 ((𝐾𝑉𝑊𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑠𝑓)) (𝑅𝑓))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  Vcvv 3488   class class class wbr 5166  cmpt 5249  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  lecple 17318  LHypclh 39941  LTrncltrn 40058  trLctrl 40115  TEndoctendo 40709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-tendo 40712
This theorem is referenced by:  istendo  40717
  Copyright terms: Public domain W3C validator